IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224024289.html
   My bibliography  Save this article

Numerical simulation on the effects of deteriorating crushed-rock interlayers on thermal stability of embankments in permafrost regions

Author

Listed:
  • Zhou, Yanqiao
  • Zhang, Mingyi
  • Pei, Wansheng
  • Bai, Ruiqiang

Abstract

The crushed-rock layer (CRL) in permafrost regions frequently deteriorates due to aeolian sand, snow accumulation as well as vibrations induced by traffic loads. This degradation can adversely affect the thermal performance of crushed-rock embankments (CREs), potentially causing deviations from their designed specifications. Therefore, it is imperative to thoroughly investigate the thermal stability of CREs under conditions of CRL degradation. By utilizing the crushed-rock interlayer embankment (CRIE) as a representative case, this study employs numerical simulations to analyze six instances of crushed-rock interlayer (CRI) deterioration, employing a mathematical model incorporating adjusted thermal parameters specific to the CRIE. In addition, a novel methodology for quantitatively analyzing temperature distributions within permafrost embankments is employed to assess the results. The findings indicate that all embankment cases lose their cooling capacity on the underlying permafrost prior to the 35th service year. Therefore, mitigating the rate of CRI degradation is essential to preserving the integrity of its underlying permafrost throughout the entire lifespan of the CRIE. The results of this study contribute to the advancement of a theoretical framework for the construction of CRIEs with significant safety margins in permafrost regions.

Suggested Citation

  • Zhou, Yanqiao & Zhang, Mingyi & Pei, Wansheng & Bai, Ruiqiang, 2024. "Numerical simulation on the effects of deteriorating crushed-rock interlayers on thermal stability of embankments in permafrost regions," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024289
    DOI: 10.1016/j.energy.2024.132654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Mingyi & Zhang, Xiyin & Li, Shuangyang & Wu, Daoyong & Pei, Wansheng & Lai, Yuanming, 2015. "Evaluating the cooling performance of crushed-rock interlayer embankments with unperforated and perforated ventilation ducts in permafrost regions," Energy, Elsevier, vol. 93(P1), pages 874-881.
    2. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    3. Yinghong Qin & Tianyu Wang & Weixin Yuan, 2023. "Wind-driven device for cooling permafrost," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Zhou, Yanqiao & Zhang, Mingyi & Pei, Wansheng & Jin, Long & Wang, Chong & Li, Guanji, 2023. "Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions," Energy, Elsevier, vol. 283(C).
    5. Sun, Zhaohui & Liu, Jiankun & You, Tian & Ren, Zhifeng & Chang, Dan & Fang, Jianhong & Vladislav, Isaev, 2024. "Field test study on thermal performance of a novel embankment using solar refrigeration technology," Renewable Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yapeng & Li, Guoyu & Ma, Wei & Wu, Gang & Chen, Zhixiang & Wang, Buxiang & Gao, Kai & Chen, Dun & Du, Qingsong & Jing, Hongyuan & Zhang, Zhenrong, 2024. "Thaw bulb formation surrounding warm-oil pipelines and evaluation of the cooling performance of a new air convection pipeline embankment structure," Energy, Elsevier, vol. 293(C).
    2. Sun, Zhaohui & Liu, Jiankun & You, Tian & Ren, Zhifeng & Chang, Dan & Fang, Jianhong & Vladislav, Isaev, 2024. "Field test study on thermal performance of a novel embankment using solar refrigeration technology," Renewable Energy, Elsevier, vol. 226(C).
    3. Yang, Sheng & Zhang, Mingyi & Bi, Jun & Pei, Wansheng & Li, Guanji & Li, Renwei, 2023. "Evaluation of the long-term thermal stability of a crushed-rock revetment embankment in pan-Arctic permafrost regions under the effect of snow drift," Energy, Elsevier, vol. 263(PB).
    4. Xu, Yingjie & Wang, Zhiwei & Jin, Huaqiang & Shen, Xi & Mao, Jianfeng & Chen, Guangming, 2024. "Study on the performance of a high-solar-efficiency ejector-compressor-partially-coupled refrigeration system with cooling storage at sub-low temperature," Renewable Energy, Elsevier, vol. 231(C).
    5. Chen, Lin & Yu, Wenbing & Zhang, Tianqi & Yi, Xin, 2023. "Asymmetric talik formation beneath the embankment of Qinghai-Tibet Highway triggered by the sunny-shady effect," Energy, Elsevier, vol. 266(C).
    6. Yinghong Qin & Tianyu Wang & Weixin Yuan, 2023. "Wind-driven device for cooling permafrost," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yanhu, Mu & Guoyu, Li & Wei, Ma & Zhengmin, Song & Zhiwei, Zhou & Wang, Fei, 2020. "Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation," Energy, Elsevier, vol. 203(C).
    8. Ma, Qinguo & Luo, Xiaoxiao & Gao, Jianqiang & Sun, Weiyu & Li, Yongdong & Lan, Tianli, 2022. "Numerical evaluation for cooling performance of a composite measure on expressway embankment with shady and sunny slopes in permafrost regions," Energy, Elsevier, vol. 244(PB).
    9. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.
    10. Zhou, Yanqiao & Zhang, Mingyi & Pei, Wansheng & Jin, Long & Wang, Chong & Li, Guanji, 2023. "Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.