IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015500.html
   My bibliography  Save this article

Bi-level distributionally robust optimization model for low-carbon planning of integrated electricity and heat systems

Author

Listed:
  • Zhou, Yizhou
  • Ge, Jingyu
  • Li, Xiang
  • Zang, Haixiang
  • Chen, Sheng
  • Sun, Guoqiang
  • Wei, Zhinong

Abstract

Interdependence among diverse energy forms within integrated electricity and heat systems (IEHSs) holds the potential to harness cooperation effects. This paper proposes a bi-level optimization model for the low-carbon planning of IEHSs, which realizes the coordination between IEHSs and their upstream networks. The precise carbon emissions of IEHSs are traced through carbon emission flows of components, power distribution networks, and district heating networks. Moreover, the distributionally robust optimization approach is employed to account for the inherent uncertainty in renewable power outputs faced by IEHS planning, by incorporating the moment information into an ambiguity set. The bi-level distributionally robust planning model of IEHSs is initially reconfigured into a second-order cone structure, employing the strong duality theory, second-order cone duality theory, and linear decision rules. Subsequently, an iterative approach is introduced to attain convergence of the reformulated bi-level model. Numerical results demonstrate the effectiveness and superiority of the proposed approach for reducing carbon emissions and economic costs of IEHSs.

Suggested Citation

  • Zhou, Yizhou & Ge, Jingyu & Li, Xiang & Zang, Haixiang & Chen, Sheng & Sun, Guoqiang & Wei, Zhinong, 2024. "Bi-level distributionally robust optimization model for low-carbon planning of integrated electricity and heat systems," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015500
    DOI: 10.1016/j.energy.2024.131777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xuewei & Fang, Jiakun & Chen, Zhe, 2022. "Distributionally robust unit commitment of integrated electricity and heat system under bi-directional variable mass flow," Applied Energy, Elsevier, vol. 326(C).
    2. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    3. Lei, Dayong & Zhang, Zhonghui & Wang, Zhaojun & Zhang, Liuyu & Liao, Wei, 2023. "Long-term, multi-stage low-carbon planning model of electricity-gas-heat integrated energy system considering ladder-type carbon trading mechanism and CCS," Energy, Elsevier, vol. 280(C).
    4. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
    5. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "Distributionally robust operation for integrated rural energy systems with broiler houses," Energy, Elsevier, vol. 254(PC).
    6. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    7. Dong, Yingchao & Zhang, Hongli & Ma, Ping & Wang, Cong & Zhou, Xiaojun, 2023. "A hybrid robust-interval optimization approach for integrated energy systems planning under uncertainties," Energy, Elsevier, vol. 274(C).
    8. Haghi, Ehsan & Qadrdan, Meysam & Wu, Jianzhong & Jenkins, Nick & Fowler, Michael & Raahemifar, Kaamran, 2020. "An iterative approach for optimal decarbonization of electricity and heat supply systems in the Great Britain," Energy, Elsevier, vol. 201(C).
    9. Zhou, Yizhou & Li, Xiang & Han, Haiteng & Wei, Zhinong & Zang, Haixiang & Sun, Guoqiang & Chen, Sheng, 2024. "Resilience-oriented planning of integrated electricity and heat systems: A stochastic distributionally robust optimization approach," Applied Energy, Elsevier, vol. 353(PA).
    10. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    11. Wang, Xu & Bie, Zhaohong & Liu, Fan & Kou, Yu, 2021. "Co-optimization planning of integrated electricity and district heating systems based on improved quadratic convex relaxation," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    2. Huang, Shaojun & Tang, Weichu & Wu, Qiuwei & Li, Canbing, 2019. "Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming," Energy, Elsevier, vol. 179(C), pages 464-474.
    3. Li, Fei & Wang, Dong & Guo, Hengdao & Zhang, Jianhua, 2024. "Distributionally Robust Optimization for integrated energy system accounting for refinement utilization of hydrogen and ladder-type carbon trading mechanism," Applied Energy, Elsevier, vol. 367(C).
    4. Zhang, Chaoyi & Jiao, Zaibin & Liu, Junshan & Ning, Keer, 2023. "Robust planning and economic analysis of park-level integrated energy system considering photovoltaic/thermal equipment," Applied Energy, Elsevier, vol. 348(C).
    5. Wu, Xuewei & Zhang, Bin & Nielsen, Mads Pagh & Chen, Zhe, 2024. "Multi-stage planning of integrated electricity-gas-heating system in the context of carbon emission reduction," Applied Energy, Elsevier, vol. 358(C).
    6. Huang, Shangjiu & Lu, Hao & Chen, Maozhi & Zhao, Wenjun, 2023. "Integrated energy system scheduling considering the correlation of uncertainties," Energy, Elsevier, vol. 283(C).
    7. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    9. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    10. Fabien Marty & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2019. "Exergy Analysis and Optimization of a Combined Heat and Power Geothermal Plant," Energies, MDPI, vol. 12(6), pages 1-22, March.
    11. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    12. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    14. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    15. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    16. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    17. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    18. Mingshan Mo & Xinrui Xiong & Yunlong Wu & Zuyao Yu, 2023. "Deep-Reinforcement-Learning-Based Low-Carbon Economic Dispatch for Community-Integrated Energy System under Multiple Uncertainties," Energies, MDPI, vol. 16(22), pages 1-18, November.
    19. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    20. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.