IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014658.html
   My bibliography  Save this article

How can the digital economy alleviate multidimensional energy poverty? —Empirical evidence of 21 prefecture-level cities in Guangdong Province

Author

Listed:
  • Guo, Qing
  • You, Wenlan

Abstract

Utilizing dynamic panel data from 21 Guangdong cities (2006–2021), this study employs a GMM model to examine the relationship between the digital economy (DE) and energy poverty (EP), analyzing its heterogeneous effects and robustness. The findings indicate that DE significantly reduces EP by enhancing energy utilisation, with varied impacts across regions and stages. Specifically, DE's contribution is more significant in economically developed Pearl River Delta regions, and increased after 2012 policy implementations. Furthermore, technological innovation acts as a threshold for DE's eradication of EP. Only when technological innovation reaches a certain threshold does the digital economy exhibit a significant effect on eradicating energy poverty. Based on these insights, policy recommendations are proposed to promote sustainable energy development in Guangdong and nationwide.

Suggested Citation

  • Guo, Qing & You, Wenlan, 2024. "How can the digital economy alleviate multidimensional energy poverty? —Empirical evidence of 21 prefecture-level cities in Guangdong Province," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014658
    DOI: 10.1016/j.energy.2024.131692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Eguino, Mikel, 2015. "Energy poverty: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 377-385.
    2. Wang, Ying & Wang, Yong & Shahbaz, Muhammad, 2023. "How does digital economy affect energy poverty? Analysis from the global perspective," Energy, Elsevier, vol. 282(C).
    3. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    5. Pelz, Setu & Urpelainen, Johannes, 2020. "Measuring and explaining household access to electrical energy services: Evidence from rural northern India," Energy Policy, Elsevier, vol. 145(C).
    6. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    7. Guta, Dawit Diriba, 2020. "Determinants of household use of energy-efficient and renewable energy technologies in rural Ethiopia," Technology in Society, Elsevier, vol. 61(C).
    8. Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
    9. Mahumane, Gilberto & Mulder, Peter, 2022. "Urbanization of energy poverty? The case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Umer Shahzad & Magdalena Radulescu & Syed Rahim & Cem Isik & Zahid Yousaf & Stefan Alexandru Ionescu, 2021. "Do Environment-Related Policy Instruments and Technologies Facilitate Renewable Energy Generation? Exploring the Contextual Evidence from Developed Economies," Energies, MDPI, vol. 14(3), pages 1-25, January.
    11. Sadath, Anver C. & Acharya, Rajesh H., 2017. "Assessing the extent and intensity of energy poverty using Multidimensional Energy Poverty Index: Empirical evidence from households in India," Energy Policy, Elsevier, vol. 102(C), pages 540-550.
    12. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.
    13. Liang, Yuanyuan & Yu, Biying & Wang, Lu, 2019. "Costs and benefits of renewable energy development in China's power industry," Renewable Energy, Elsevier, vol. 131(C), pages 700-712.
    14. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    15. Ngarava, Saul & Zhou, Leocadia & Ningi, Thulani & Chari, Martin M. & Mdiya, Lwandiso, 2022. "Gender and ethnic disparities in energy poverty: The case of South Africa," Energy Policy, Elsevier, vol. 161(C).
    16. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    17. Xia, Wanjun & Murshed, Muntasir & Khan, Zeeshan & Chen, Zhenling & Ferraz, Diogo, 2022. "Exploring the nexus between fiscal decentralization and energy poverty for China: Does country risk matter for energy poverty reduction?," Energy, Elsevier, vol. 255(C).
    18. Dong, Kangyin & Jiang, Qingzhe & Shahbaz, Muhammad & Zhao, Jun, 2021. "Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China," Energy Economics, Elsevier, vol. 99(C).
    19. Wang, Ke & Wang, Ya-Xuan & Li, Kang & Wei, Yi-Ming, 2015. "Energy poverty in China: An index based comprehensive evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 308-323.
    20. Nguyen, Canh Phuc & Su, Thanh Dinh, 2022. "The influences of government spending on energy poverty: Evidence from developing countries," Energy, Elsevier, vol. 238(PA).
    21. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    22. Sovacool, Benjamin K. & Turnheim, Bruno & Hook, Andrew & Brock, Andrea & Martiskainen, Mari, 2021. "Dispossessed by decarbonisation: Reducing vulnerability, injustice, and inequality in the lived experience of low-carbon pathways," World Development, Elsevier, vol. 137(C).
    23. Bazilian, Morgan & Sagar, Ambuj & Detchon, Reid & Yumkella, Kandeh, 2010. "More heat and light," Energy Policy, Elsevier, vol. 38(10), pages 5409-5412, October.
    24. Lyu, Yanwei & Wu, You & Zhang, Jinning, 2023. "How industrial structure distortion affects energy poverty? Evidence from China," Energy, Elsevier, vol. 278(C).
    25. Ren, Yi-Shuai & Jiang, Yong & Narayan, Seema & Ma, Chao-Qun & Yang, Xiao-Guang, 2022. "Marketisation and rural energy poverty: Evidence from provincial panel data in China," Energy Economics, Elsevier, vol. 111(C).
    26. Chaudhry, Sajid M. & Shafiullah, Muhammad, 2021. "Does culture affect energy poverty? Evidence from a cross-country analysis," Energy Economics, Elsevier, vol. 102(C).
    27. Jinlin Li & Litai Chen & Ying Chen & Jiawen He, 2022. "Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(3), pages 616-629, April.
    28. Adom, Philip Kofi & Amuakwa-Mensah, Franklin & Agradi, Mawunyo Prosper & Nsabimana, Aimable, 2021. "Energy poverty, development outcomes, and transition to green energy," Renewable Energy, Elsevier, vol. 178(C), pages 1337-1352.
    29. Dong, Kangyin & Taghizadeh-Hesary, Farhad & Zhao, Jun, 2022. "How inclusive financial development eradicates energy poverty in China? The role of technological innovation," Energy Economics, Elsevier, vol. 109(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Yan & Hu, Dongmei & Irfan, Muhammad & Wu, Haitao & Hao, Yu, 2023. "Natural resources policy making through finance? The role of green finance on energy resources poverty," Resources Policy, Elsevier, vol. 85(PA).
    2. Wang, Xiong & Yang, Wanping & Ren, Xiaohang & Lu, Zudi, 2023. "Can financial inclusion affect energy poverty in China? Evidence from a spatial econometric analysis," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 255-269.
    3. Zou, Ran & Yang, Jun & Feng, Chao, 2023. "Does informatization alleviate energy poverty? A global perspective," Energy Economics, Elsevier, vol. 126(C).
    4. Huang, Yatao & Jiao, Wenxian & Wang, Kang & Li, Erling & Yan, Yutong & Chen, Jingyang & Guo, Xuanxuan, 2022. "Examining the multidimensional energy poverty trap and its determinants: An empirical analysis at household and community levels in six provinces of China," Energy Policy, Elsevier, vol. 169(C).
    5. Lee, Chien-Chiang & Yuan, Zihao & Lee, Chi-Chuan & Chang, Yu-Fang, 2022. "The impact of renewable energy technology innovation on energy poverty: Does climate risk matter?," Energy Economics, Elsevier, vol. 116(C).
    6. Zhang, Sheng-Hao & Yang, Jun & Feng, Chao, 2023. "Can internet development alleviate energy poverty? Evidence from China," Energy Policy, Elsevier, vol. 173(C).
    7. Kocak, Emrah & Ulug, Eyup Emre & Oralhan, Burcu, 2023. "The impact of electricity from renewable and non-renewable sources on energy poverty and greenhouse gas emissions (GHGs): Empirical evidence and policy implications," Energy, Elsevier, vol. 272(C).
    8. Liu, Zhong & Zhou, Zuanjiu & Liu, Chang, 2023. "Estimating the impact of rural centralized residence policy interventions on energy poverty in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Shahzad, Umer & Gupta, Mansi & Sharma, Gagan Deep & Rao, Amar & Chopra, Ritika, 2022. "Resolving energy poverty for social change: Research directions and agenda," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    10. Fu Wang & Hong Geng & Donglan Zha & Chaoqun Zhang, 2023. "Multidimensional Energy Poverty in China: Measurement and Spatio-Temporal Disparities Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 45-78, August.
    11. Ren, Yi-Shuai & Kuang, Xianhua & Klein, Tony, 2024. "Does the urban–rural income gap matter for rural energy poverty?," Energy Policy, Elsevier, vol. 186(C).
    12. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    13. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    14. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    15. Moteng, Ghislain & Raghutla, Chandrashekar & Njangang, Henri & Nembot, Luc Ndeffo, 2023. "International sanctions and energy poverty in target developing countries," Energy Policy, Elsevier, vol. 179(C).
    16. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    17. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    18. Tiwari, Sunil & Si Mohammed, Kamel & Guesmi, Khaled, 2023. "A way forward to end energy poverty in China: Role of carbon-cutting targets and net-zero commitments," Energy Policy, Elsevier, vol. 180(C).
    19. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad, 2022. "How renewable energy alleviate energy poverty? A global analysis," Renewable Energy, Elsevier, vol. 186(C), pages 299-311.
    20. Dong, Kangyin & Taghizadeh-Hesary, Farhad & Zhao, Jun, 2022. "How inclusive financial development eradicates energy poverty in China? The role of technological innovation," Energy Economics, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.