Investigations of a turbine pre-swirl system with high temperature drop efficiency through the design of a novel vane-shaped receiver hole
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131632
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gong, Wenbin & Lei, Zhao & Nie, Shunpeng & Liu, Gaowen & Lin, Aqiang & Feng, Qing & Wang, Zhiwu, 2023. "A novel combined model for energy consumption performance prediction in the secondary air system of gas turbine engines based on flow resistance network," Energy, Elsevier, vol. 280(C).
- Ma, Jiale & Liu, Gaowen & Li, Jinze & Wu, Chaolin & Zhang, Yue & Lin, Aqiang, 2024. "Evaluation of low power consumption and temperature drop potential in an aero-engine pre-swirl system for turbine performance improvement," Applied Energy, Elsevier, vol. 359(C).
- Lin, Aqiang & Liu, Gaowen & Li, Pengfei & Zhang, Zhiyuan & Feng, Qing, 2022. "Theoretical and experimental evaluations of pre-swirl rotor-stator system with inner seal bypass configuration for turbine performance improvement," Energy, Elsevier, vol. 258(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Choi, Seungyeong & Bang, Minho & Park, Hee Seung & Heo, Jeonghun & Cho, Myung Hwan & Cho, Hyung Hee, 2024. "Machine learning-assisted effective thermal management of rotor-stator systems," Energy, Elsevier, vol. 299(C).
- Gong, Wenbin & Lei, Zhao & Nie, Shunpeng & Liu, Gaowen & Lin, Aqiang & Feng, Qing & Wang, Zhiwu, 2023. "A novel combined model for energy consumption performance prediction in the secondary air system of gas turbine engines based on flow resistance network," Energy, Elsevier, vol. 280(C).
- Serhii Vladov & Ruslan Yakovliev & Maryna Bulakh & Victoria Vysotska, 2024. "Neural Network Approximation of Helicopter Turboshaft Engine Parameters for Improved Efficiency," Energies, MDPI, vol. 17(9), pages 1-28, May.
More about this item
Keywords
Aero-engine; Pre-swirl system; Receiver hole; Temperature drop; Power consumption; Entropy increase;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014051. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.