IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i9p1623-1631.html
   My bibliography  Save this article

Australia’s CO2 geological storage potential and matching of emission sources to potential sinks

Author

Listed:
  • Bradshaw, J
  • Allinson, G
  • Bradshaw, B.E
  • Nguyen, V
  • Rigg, A.J
  • Spencer, L
  • Wilson, P

Abstract

Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO2. The geological analysis assessed over 100 potential environmentally sustainable sites for CO2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO2, then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100–115 Mt CO2 per year.

Suggested Citation

  • Bradshaw, J & Allinson, G & Bradshaw, B.E & Nguyen, V & Rigg, A.J & Spencer, L & Wilson, P, 2004. "Australia’s CO2 geological storage potential and matching of emission sources to potential sinks," Energy, Elsevier, vol. 29(9), pages 1623-1631.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1623-1631
    DOI: 10.1016/j.energy.2004.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420400146X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Callas, Catherine & Saltzer, Sarah D. & Steve Davis, J. & Hashemi, Sam S. & Kovscek, Anthony R. & Okoroafor, Esuru R. & Wen, Gege & Zoback, Mark D. & Benson, Sally M., 2022. "Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage," Applied Energy, Elsevier, vol. 324(C).
    2. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    3. Buttinelli, M. & Procesi, M. & Cantucci, B. & Quattrocchi, F. & Boschi, E., 2011. "The geo-database of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy," Energy, Elsevier, vol. 36(5), pages 2968-2983.
    4. Barbara Uliasz-Misiak & Jacek Misiak, 2024. "Underground Gas Storage in Saline Aquifers: Geological Aspects," Energies, MDPI, vol. 17(7), pages 1-24, March.
    5. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Reedman, Luke J. & Graham, Paul W., 2008. "Emissions Trading and the Convergence of the Australian Electricity and Transport Markets," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6042, Australian Agricultural and Resource Economics Society.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1623-1631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.