IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i12p2553-2572.html
   My bibliography  Save this article

Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems

Author

Listed:
  • Biagetti, Tatiana
  • Sciubba, Enrico

Abstract

This paper presents a critical and analytical description of an ongoing research program aimed at the implementation of an expert system capable of monitoring, through an Intelligent Health Control procedure, the instantaneous performance of a cogeneration plant. An application has been tested on a real plant, located on the grounds of the ENEA-Casaccia Energy Laboratories. The expert system, denominated PROMISE as the Italian acronym for PROgnostic and Intelligent Monitoring Expert System, generates, in real time and in a form directly useful to the plant manager, information on the existence and severity of faults, forecasts on the future time history of both detected and likely faults, and suggestions on how to control the problem.

Suggested Citation

  • Biagetti, Tatiana & Sciubba, Enrico, 2004. "Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems," Energy, Elsevier, vol. 29(12), pages 2553-2572.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2553-2572
    DOI: 10.1016/j.energy.2004.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    2. Chung, Mo & Park, Hwa-Choon, 2010. "Development of a software package for community energy system assessment – Part I: Building a load estimator," Energy, Elsevier, vol. 35(7), pages 2767-2776.
    3. Silva, J.A.M. & Venturini, O.J. & Lora, E.E.S. & Pinho, A.F. & Santos, J.J.C.S., 2011. "Thermodynamic information system for diagnosis and prognosis of power plant operation condition," Energy, Elsevier, vol. 36(7), pages 4072-4079.
    4. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    5. Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
    6. Ahmad Y. Al Rashdan & Hany S. Abdel-Khalik & Kellen M. Giraud & Daniel G. Cole & Jacob A. Farber & William W. Clark & Abenezer Alemu & Marcus C. Allen & Ryan M. Spangler & Athi Varuttamaseni, 2022. "A Qualitative Strategy for Fusion of Physics into Empirical Models for Process Anomaly Detection," Energies, MDPI, vol. 15(15), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2553-2572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.