IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i12p2537-2552.html
   My bibliography  Save this article

Ozone friendly binary blends R 32/R 134a and the ternary R 407b

Author

Listed:
  • Stegou-Sagia, A.
  • Kakatsios, X.
  • Damanakis, M.

Abstract

The objective of this paper is to present thermodynamic properties and characteristics of the binary refrigerant mixtures R 32/R 134a in compositions 20/80%, 30/70%, 40/60% by mass and of the ternary mixture R 407b: 10 wt% R 32+70 wt% R 125+20 wt% R 134a. A computer code has been developed and by use of a Peng–Robinson type equation of state, PVT data for all working fluids are determined. Based on the thermodynamics theory, analytical relationships for the enthalpy, entropy, constant pressure and constant volume specific heats as well as for k-type isentropic change exponents are given. Furthermore, comparisons are provided by means of diagrams illustrating the influence of state conditions on the k-type exponents kp,V, kT,V, kp,T, and classical k (k=cP/cV). A systematic study has also been carried out and the data obtained are plotted for a better physical feeling related to the sound velocity of real gas for the R 32/R 134a blend in composition 20/80%. The results are compared with corresponding ones of the ternary R 407b.

Suggested Citation

  • Stegou-Sagia, A. & Kakatsios, X. & Damanakis, M., 2004. "Ozone friendly binary blends R 32/R 134a and the ternary R 407b," Energy, Elsevier, vol. 29(12), pages 2537-2552.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2537-2552
    DOI: 10.1016/j.energy.2004.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fábrega, F.M. & Rossi, J.S. & d'Angelo, J.V.H., 2010. "Exergetic analysis of the refrigeration system in ethylene and propylene production process," Energy, Elsevier, vol. 35(3), pages 1224-1231.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2537-2552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.