IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i12p2225-2237.html
   My bibliography  Save this article

Energy-use analysis and improvement for delayed coking units

Author

Listed:
  • Chen, Q.L.
  • Yin, Q.H.
  • Wang, S.P.
  • Hua, B.

Abstract

This paper presents the energy and exergy analyses for a delayed coking unit in a Chinese refinery using the three-link energy structural model. According to the results of energy-use analysis and evaluation, the potentials of energy-use and improvements for energy-savings as well as detail procedures are suggested. The proposed improvements are expected to remarkably lower the energy consumption and to improve the economic profits of the delayed coking unit. Compared to the original unit, the energy consumption of the improved flowsheet decreased by 37.2%, which demonstrates that the applied strategies are suitable for the energy-use analysis and improvement of process systems.

Suggested Citation

  • Chen, Q.L. & Yin, Q.H. & Wang, S.P. & Hua, B., 2004. "Energy-use analysis and improvement for delayed coking units," Energy, Elsevier, vol. 29(12), pages 2225-2237.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2225-2237
    DOI: 10.1016/j.energy.2004.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204000994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Q.L. & Yin, Q.H. & Hua, B., 2002. "An exergoeconomic approach for retrofit of fractionating systems," Energy, Elsevier, vol. 27(1), pages 65-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bussman, W.R. & Baukal, C.E., 2009. "Ambient condition effects on process heater efficiency," Energy, Elsevier, vol. 34(10), pages 1624-1635.
    2. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    3. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    4. Soiket, Md.I.H. & Oni, A.O. & Gemechu, E.D. & Kumar, A., 2019. "Life cycle assessment of greenhouse gas emissions of upgrading and refining bitumen from the solvent extraction process," Applied Energy, Elsevier, vol. 240(C), pages 236-250.
    5. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in upgrading and refining of Canada's oil sands products," Energy, Elsevier, vol. 83(C), pages 65-79.
    6. de Lima, Romulo S. & Schaeffer, Roberto, 2011. "The energy efficiency of crude oil refining in Brazil: A Brazilian refinery plant case," Energy, Elsevier, vol. 36(5), pages 3101-3112.
    7. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    2. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul, 2016. "An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings," Energy, Elsevier, vol. 117(P2), pages 506-522.
    3. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    4. Kan Wang & Jianqing Hu & Qiaoqiao Tang & Chang He & Bingjian Zhang & Qinglin Chen, 2023. "An engineering target-oriented multi-scenario heat exchanger network retrofit methodology with consideration of exergoeconomic assessment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 375-399, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2225-2237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.