IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010363.html
   My bibliography  Save this article

Comparison of the performance enhancement of vacuum ejector by means of structure optimization and bypass methods

Author

Listed:
  • Niu, Leilei
  • Zhang, Xiaobing

Abstract

The ejector can create a vacuum environment without electricity and produce no pollutants, making it widely used in various fields. However, during the working process, a large amount of high-pressure air needs to be continuously supplied to maintain the vacuum level. Given the current energy shortages, it is essential to enhance the entrainment capacity and reduce the energy requirements of the vacuum ejector. To achieve this goal, a two-stage vacuum ejector (TSVE) and structure optimization are adopted. While achieving the same vacuum level (80 kPa or 90 kPa), the air consumption (m˙p) and entrainment ratio (Er) of vacuum ejectors with various shapes are compared. Through structural optimization, five high-performance vacuum ejectors (Pp < 0.6 MPa, Er > 0.65) are selected. Computational Fluid Dynamics (CFD) is applied to observe the mixing processes in the vacuum ejector. In addition, the optimized vacuum ejector and TSVE are compared to the original one. An experimental system is designed for this purpose. The findings indicate that both methods can enhance the performance of the vacuum ejector. However, the benefits of TSVE are more pronounced at lower vacuum levels, while the advantages of the optimized vacuum ejector become more obvious as the vacuum level increases.

Suggested Citation

  • Niu, Leilei & Zhang, Xiaobing, 2024. "Comparison of the performance enhancement of vacuum ejector by means of structure optimization and bypass methods," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010363
    DOI: 10.1016/j.energy.2024.131263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Llorenç Macia & Robert Castilla & Pedro Javier Gamez-Montero & Gustavo Raush, 2022. "Multi-Factor Design for a Vacuum Ejector Improvement by In-Depth Analysis of Construction Parameters," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    2. Wang, Lei & Liu, Jiapeng & Zou, Tao & Du, Jingwei & Jia, Fengze, 2018. "Auto-tuning ejector for refrigeration system," Energy, Elsevier, vol. 161(C), pages 536-543.
    3. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    4. Wu, Yifei & Zhao, Hongxia & Zhang, Cunquan & Wang, Lei & Han, Jitian, 2018. "Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test," Energy, Elsevier, vol. 151(C), pages 79-93.
    5. Chen, Jianyong & Li, Yunhai & Chen, Weixiong & Luo, Xianglong & Chen, Ying & Yang, Zhi & Eames, Ian W., 2018. "Investigation of the ejector nozzle in refrigeration system," Energy, Elsevier, vol. 157(C), pages 571-587.
    6. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    7. Yan, Jia & Cai, Wenjian & Li, Yanzhong, 2012. "Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant," Renewable Energy, Elsevier, vol. 46(C), pages 155-163.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shengyu & Yan, Jia & Liu, Zhan & Yao, Yong & Li, Xianbi & Wen, Na & Zou, Guorong, 2019. "Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks," Energy, Elsevier, vol. 189(C).
    2. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    3. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    4. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    5. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    6. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    7. Llorenç Macia & Robert Castilla & Pedro Javier Gamez-Montero & Gustavo Raush, 2022. "Multi-Factor Design for a Vacuum Ejector Improvement by In-Depth Analysis of Construction Parameters," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    8. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    9. Chen, Hongjie & Zhu, Jiahua & Ge, Jing & Lu, Wei & Zheng, Lixing, 2020. "A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position," Energy, Elsevier, vol. 208(C).
    10. Yang, Yan & Karvounis, Nikolas & Walther, Jens Honore & Ding, Hongbing & Wen, Chuang, 2021. "Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations," Energy, Elsevier, vol. 237(C).
    11. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    12. Van den Berghe, Jan & Dias, Bruno R.B. & Bartosiewicz, Yann & Mendez, Miguel A., 2023. "A 1D model for the unsteady gas dynamics of ejectors," Energy, Elsevier, vol. 267(C).
    13. Hasan, Alabas & Mugdadi, Basheer & Al-Nimr, Moh'd A. & Tashtoush, Bourhan, 2022. "Direct and indirect utilization of thermal energy for cooling generation: A comparative analysis," Energy, Elsevier, vol. 238(PC).
    14. Al-Nimr, Moh’d Ahmad & Tashtoush, Bourhan & Hasan, Alabas, 2020. "A novel hybrid solar ejector cooling system with thermoelectric generators," Energy, Elsevier, vol. 198(C).
    15. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Yikai & Zhao, Pan & Wang, Shunsen, 2023. "Multi-objective optimization and off-design performance evaluation of coaxial turbomachines for a novel energy storage-based recuperated S–CO2 Brayton cycle driven by nuclear energy," Energy, Elsevier, vol. 275(C).
    17. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    18. Saeid, Omar & Hashem, Gamal & Etaig, Saleh & Belgasim, Basim & Sagade, Atul, 2024. "Performance assessment of ammonia base solar ejector cooling system emphasizing ejector geometries: A detailed CFD analysis," Energy, Elsevier, vol. 301(C).
    19. Lu, Shilei & Gao, Jingxian & Tong, Haojie & Yin, Shuai & Tang, Xiaolei & Jiang, Xiangyang, 2020. "Model establishment and operation optimization of the casing PCM radiant floor heating system," Energy, Elsevier, vol. 193(C).
    20. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.