IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009617.html
   My bibliography  Save this article

Experimental investigation of atomization characteristics of sonic blasting nozzle based on De-Laval dynamics

Author

Listed:
  • Chen, Xi
  • Bai, Xiao
  • Fan, Chaonan
  • Ge, Shaocheng
  • Deng, Cunbao
  • Ma, Guoliang

Abstract

The sonic boom atomization mechanism was applied to design a nozzle based on the Laval aerodynamics principle. The designed nozzle was simulated on the Fluent platform and the performance of the nozzles was evaluated on a test platform. The different parameters, including the flow characteristics, atomization characteristics, and dust reduction efficiency of the nozzle were analyzed under different air-water conditions. The obtained results show that under the same air and water pressure conditions, the size probability distribution peak, particle size distribution range, and median diameter of the droplet are smaller than those of an internal mixing nozzle. The sonic boom atomization nozzle consumes less water compared to traditional nozzles. After the installation of the sonic boom fog screen dust reduction system in the return air channel, the average values of total dust concentration and respiratory dust concentration were reduced by 91.26% and 90.16%, respectively. The obtained results indicate that sonic boom atomization nozzles can realize water saving and efficient dust reduction in underground coal mines.

Suggested Citation

  • Chen, Xi & Bai, Xiao & Fan, Chaonan & Ge, Shaocheng & Deng, Cunbao & Ma, Guoliang, 2024. "Experimental investigation of atomization characteristics of sonic blasting nozzle based on De-Laval dynamics," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009617
    DOI: 10.1016/j.energy.2024.131188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
    2. Bian, Jiang & Cao, Xuewen & Yang, Wen & Edem, Mawugbe Ayivi & Yin, Pengbo & Jiang, Wenming, 2018. "Supersonic liquefaction properties of natural gas in the Laval nozzle," Energy, Elsevier, vol. 159(C), pages 706-715.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    2. Ding, Hongbing & Zhang, Yu & Sun, Chunqian & Yang, Yan & Wen, Chuang, 2022. "Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models," Energy, Elsevier, vol. 258(C).
    3. Wu, Shiguang & Zhao, Bangjian & Tan, Jun & Zhao, Yongjiang & Zhai, Yujia & Xue, Renjun & Tan, Han & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic study on throttling process of Joule-Thomson cooler to improve helium liquefaction performance between 2 K and 4 K," Energy, Elsevier, vol. 277(C).
    4. Zhang, Yi & Jiang, Bingyou & Zhao, Yang & Zheng, Yuannan & Wang, Shiju & Wang, Xiao-Han & Lu, Kunlun & Ren, Bo & Nie, Wen & Yu, Haiming & Liu, Zhuang & Xu, Shuo, 2024. "Synergistic effect of surfactants and nanoparticles on the wettability of coal: An experimental and simulation study," Energy, Elsevier, vol. 295(C).
    5. Jia-Xin Li & Yun-Ze Li & Ben-Yuan Cai & En-Hui Li, 2019. "Experimental Investigation on Heat Transfer Mechanism of Air-Blast-Spray-Cooling System with a Two-Phase Ejector Loop for Aeronautical Application," Energies, MDPI, vol. 12(20), pages 1-20, October.
    6. Li, Zhuoran & Zhang, Caigong & Li, Changjun & Jia, Wenlong, 2022. "Thermodynamic study on the natural gas condensation in the throttle valve for the efficiency of the natural gas transport system," Applied Energy, Elsevier, vol. 322(C).
    7. Bian, Jiang & Guo, Dan & Li, Yuxuan & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2022. "Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective," Energy, Elsevier, vol. 249(C).
    8. Wang, Shibin & Qin, Yueping & Wang, Gang & Chen, Xuechang & Chi, Lihui & Yang, Liu, 2024. "Numerical simulation of ultrasonic P-wave propagation in water-bearing coal based on gas-liquid homogeneous wave velocity model," Energy, Elsevier, vol. 298(C).
    9. Liu, Yang & Cao, Xuewen & Guo, Dan & Cao, Hengguang & Bian, Jiang, 2023. "Influence of shock wave/boundary layer interaction on condensation flow and energy recovery in supersonic nozzle," Energy, Elsevier, vol. 263(PA).
    10. Zou, Aihong & Zeng, Yupei & Luo, Ercang, 2023. "New generation hydrogen liquefaction technology by transonic two-phase expander," Energy, Elsevier, vol. 272(C).
    11. He, Jiawei & Li, He & Yang, Wei & Lu, Jiexin & Lu, Yi & Liu, Ting & Shi, Shiliang, 2023. "Experimental study on erosion mechanism and pore structure evolution of bituminous and anthracite coal under matrix acidification and its significance to coalbed methane recovery," Energy, Elsevier, vol. 283(C).
    12. Bian, Jiang & Cao, Xuewen & Teng, Lin & Sun, Yuan & Gao, Song, 2019. "Effects of inlet parameters on the supersonic condensation and swirling characteristics of binary natural gas mixture," Energy, Elsevier, vol. 188(C).
    13. Chen, Jianan & Li, Anna & Huang, Zhu & Jiang, Wenming & Xi, Guang, 2023. "Non-equilibrium condensation in flue gas and migration trajectory of CO2 droplets in a supersonic separator," Energy, Elsevier, vol. 276(C).
    14. Tang, Yongzhi & Yuan, Jiali & Liu, Zhongliang & Feng, Qing & Gong, Xiaolong & Lu, Lin & Chua, Kian Jon, 2022. "Study on evolution laws of two-phase choking flow and entrainment performance of steam ejector oriented towards MED-TVC desalination system," Energy, Elsevier, vol. 242(C).
    15. Guo, Dan & Cao, Xuewen & Zhang, Pan & Ding, Gaoya & Liu, Yang & Cao, Hengguang & Bian, Jiang, 2022. "Heterogeneous condensation mechanism of methane-hexane binary mixture," Energy, Elsevier, vol. 256(C).
    16. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang, 2023. "Joule-Thomson effect and flow behavior for energy-efficient dehydration of high-pressure natural gas in supersonic separator," Energy, Elsevier, vol. 279(C).
    17. Xueyuan Long & Qian Huang & Yuan Tian & Lingyan Mu, 2022. "Effects of the Operating Parameters of Supersonic Separators on the Supersonic Liquefaction Characteristics of Natural Gas," Energies, MDPI, vol. 15(7), pages 1-16, March.
    18. Bian, Jiang & Cao, Xuewen & Yang, Wen & Song, Xiaodan & Xiang, Chengcheng & Gao, Song, 2019. "Condensation characteristics of natural gas in the supersonic liquefaction process," Energy, Elsevier, vol. 168(C), pages 99-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.