IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003694.html
   My bibliography  Save this article

Determination of electrical and thermal conductivities of n- and p-type thermoelectric materials by prediction iteration machine learning method

Author

Listed:
  • Tiryaki, Hasan
  • Yusuf, Aminu
  • Ballikaya, Sedat

Abstract

Synthesising a novel high-performance thermoelectric (TE) material is time-consuming because different compositions of the chemical elements are usually varied using a trial-and-error approach. Moreover, the characterisation of TE materials requires both complex and expensive equipment; these measuring devices often fail during operation. Machine learning (ML) models can be used to accurately predict the properties of a novel composition, saving time as well as the cost of the material and equipment. In this study, two different prediction scenarios have been demonstrated, one for n-type with the general formula BixBayBzYbtTe3, and another for p-type with the general formula SbxBiyBazBtYbwTe3. From the experimental data of the above-mentioned n- and p-type compounds, transport properties of n-type Bi2-xTe3 and p-type Sb1.5Bi0.5-xTe3, where x ranges from 0 to 0.5, involving content variations of Ba, B, and Yb, are predicted. Case 1 deals with the prediction of resistivity and Seebeck values, while case 2 predicts the heat capacity (Cp) and thermal diffusivity values of the n- and p-type TE materials. Herein, different compositions of n-type BixBayBzYbtTe3 and p-type SbxBiyBazBtYbwTe3 are synthesised, and the experimental data are fed to 26 ML models. After training all the ML models, an Artificial Neural Networks (ANN) ML model with the highest R2 values of 0.9943 and 0.9995 in cases 1 and 2, respectively, is found to outperform the other models. The prediction iteration method is applied to the ANN to predict the transport properties of the p-type Sb1.5Bi0.2Ba0.3Te3 and n-type Bi1.9Ba0.1Te3. The accuracy of the prediction iteration method increases with the number of iterations. At the end of the 100th iteration, the prediction error of the ANN model in case 1 is as low as 7%, while it is 9% in case 2.

Suggested Citation

  • Tiryaki, Hasan & Yusuf, Aminu & Ballikaya, Sedat, 2024. "Determination of electrical and thermal conductivities of n- and p-type thermoelectric materials by prediction iteration machine learning method," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003694
    DOI: 10.1016/j.energy.2024.130597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yusuf, Aminu & Ballikaya, Sedat, 2022. "Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    2. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.