IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v291y2024ics0360544224002305.html
   My bibliography  Save this article

Cost analysis of onshore wind power in China based on learning curve

Author

Listed:
  • Zhang, Ming
  • Cong, Nan
  • Song, Yan
  • Xia, Qing

Abstract

As installed wind power capacity continues to rise, the cost of onshore wind power generation in China has fallen, far exceeding the world average. The purpose of this study is to explore the main factors affecting onshore wind power in China and to identify ways to reduce costs. So as to reduce the cost of wind power and promote the large-scale grid-connected use of wind power. Therefore, this paper summarizes various factors that affect the development of onshore wind power. We also provide a comprehensive and repeatable MFLC (multi-factor learning curve) method to evaluate the factors affecting the cost of onshore wind power. Subsequently, the learning rates of various factors are calculated using this method. The results show that empirical learning by increasing installed capacity/generation, improving technology and selecting sites which are rich in natural resources, and appropriately reducing capital investment and material prices can significantly reduce the LCOE (levelized cost of electricity) of onshore wind power in China. Compared with wind power giants of the United States and Germany, the reduction in the cost of onshore wind power generation in China is more dependent on inputs such as capital investment and raw materials, while experience plays a relatively minor role. The ability to make full use of natural resources and to convert wind energy into electricity more efficiently is crucial to reducing the cost of wind power.

Suggested Citation

  • Zhang, Ming & Cong, Nan & Song, Yan & Xia, Qing, 2024. "Cost analysis of onshore wind power in China based on learning curve," Energy, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:energy:v:291:y:2024:i:c:s0360544224002305
    DOI: 10.1016/j.energy.2024.130459
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hua, Ershi & Sun, Ruyi & Feng, Ping & Song, Lili & Han, Mengyao, 2024. "Optimizing onshore wind power installation within China via geographical multi-objective decision-making," Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:291:y:2024:i:c:s0360544224002305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.