IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034497.html
   My bibliography  Save this article

Effects of dual Gemini-based fracturing fluid on the physicochemical properties of coking coal: Material preparation and wetting mechanism

Author

Listed:
  • Zhou, Gang
  • Wang, Qi
  • Zhang, Yizhen
  • Zhang, Qi
  • Li, Lin
  • Wang, Yongmei
  • Sun, Biao
  • Liu, Rulin

Abstract

In order to study the effects of fracturing fluid on the physicochemical properties of coking coal, and further improve the wetting effect of fracturing fluid on coal body. In this paper, an amphoteric surfactant (AS-22) was synthesized from erucic acid, and an amphoteric Gemini surfactant (GAS-22) was further synthesized by introducing 1,3-dichloro-2-propanol as a linker group. Then, the dual Gemini-based fracturing fluid (GAS-22/Gemini-3OH) that can be used for coal seam water injection to wet the coal body is prepared by combining with anionic Gemini surfactant (Gemini-3OH). The coal samples treated with fracturing fluid were analyzed by using characterization measurements, performance analysis and molecular dynamics simulation to reveal the mechanism of action of fracturing fluid wetting coal body. The results showed that four fracturing fluids, AS-22, GAS-22, AS-22/Gemini-3OH and GAS-22/Gemini-3OH, had different degrees of influence on the physicochemical properties of coking coal, and GAS-22/Gemini-3OH had the greatest influence on the element content, morphological structure, and compositional content of the coal samples. In addition, the contact angle experiments and molecular dynamics simulation showed that GAS-22/Gemini-3OH had better adsorption and wetting effect on coal body. This study provides theoretical guidance for developing efficient fracturing fluid to improve the wetting performance of coal bodies.

Suggested Citation

  • Zhou, Gang & Wang, Qi & Zhang, Yizhen & Zhang, Qi & Li, Lin & Wang, Yongmei & Sun, Biao & Liu, Rulin, 2024. "Effects of dual Gemini-based fracturing fluid on the physicochemical properties of coking coal: Material preparation and wetting mechanism," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034497
    DOI: 10.1016/j.energy.2023.130055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Quanle & Zhang, Tiancheng & Ma, Tengfei & Tian, Shixiang & Jia, Xueqi & Jiang, Zebiao, 2022. "Effect of water-based SiO2 nanofluid on surface wettability of raw coal," Energy, Elsevier, vol. 254(PA).
    2. Sun, Lulu & Zhan, Mingyu & Zhang, Chen & Shi, Quanlin & Huang, Qiming & Wang, Wenjie, 2022. "Experimental study on prevention of spontaneous combustion of coal by ionic surfactant solution injection in coal seam," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
    2. Zhang, Yi & Jiang, Bingyou & Zhao, Yang & Zheng, Yuannan & Wang, Shiju & Wang, Xiao-Han & Lu, Kunlun & Ren, Bo & Nie, Wen & Yu, Haiming & Liu, Zhuang & Xu, Shuo, 2024. "Synergistic effect of surfactants and nanoparticles on the wettability of coal: An experimental and simulation study," Energy, Elsevier, vol. 295(C).
    3. Gao, Kaiyang & Yang, Yongliang & Yan, Qi & Li, Purui & Zhang, Yifan & Wang, Guoqin, 2024. "Preparation and study of a sodium alginate film for preventing spontaneous combustion of water-soaked coal in goaf," Energy, Elsevier, vol. 289(C).
    4. Hongyan Qin & Jingui Zhang & Zhiheng Cheng & Zhenhua Ouyang & Liang Chen & Haiyang Yi & Xidong Zhao & Yang Li & Hao Liu, 2022. "Research on Overburden Failure Characteristics Based on the Theory of Plates and Shells," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    5. Cun Zhang & Xiaojie Wang & Shangxin Fang & Xutao Shi, 2022. "Construction and Application of VR-AR Teaching System in Coal-Based Energy Education," Sustainability, MDPI, vol. 14(23), pages 1-14, December.
    6. Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
    7. He, Yongjun & Deng, Jun & Yi, Xin & Xiao, Yang & Deng, Yin & Chen, Weile, 2023. "Effect of rare-earth-containing inhibitors on the low-temperature oxidation characteristics and thermodynamic properties of coal," Energy, Elsevier, vol. 281(C).
    8. Xiaoyan Sun & Qican Ran & Hao Liu & Yanhao Ning & Tengfei Ma, 2023. "Characteristics of Stress-Displacement-Fracture Multi-Field Evolution around Gas Extraction Borehole," Energies, MDPI, vol. 16(6), pages 1-21, March.
    9. Zebiao Jiang & Xiping Quan & Shixiang Tian & Hao Liu & Yaling Guo & Xiangxiang Fu & Xifa Yang, 2022. "Permeability-Enhancing Technology through Liquid CO 2 Fracturing and Its Application," Sustainability, MDPI, vol. 14(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.