IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223029493.html
   My bibliography  Save this article

Energy and yield optimization of field and vegetable crops in heavy crop residue for Indian conditions-climate smart techniques for food security

Author

Listed:
  • Chandel, Rupinder
  • Raj, Ritu
  • Kaur, Arpandeep
  • Singh, Kuldeep
  • Kataria, Sanjeev Kumar

Abstract

In NW-India cereal and vegetable crops are sown in paddy, sugarcane, maize, cotton (P–S-M-C) residue and left over crop residue management is major energy intensive operation and is pre requisite for sowing and better establishment of next cereal, pulses, vegetables and oilseed crops, which needs to be completed in a window period of 15–20 days. The dehaulming operation involved in potato crop is done manually and is energy intensive (2562 MJ ha−1).The peas and canola are harvested manually and energy involved is 2744 MJ ha−1 and 343 MJ ha−1. The incorporation of previous crop residue resulted in higher yields and more profits. The highest energy was involved in incorporation technique used for crop residue management as 156.06 GJ ha−1 followed by baler + incorporation technique as 141.71 GJ ha−1. The energy involved in wheat seeders were 6.04 GJ ha−1 and 4.17 GJ ha−1 respectively. The maximum energy input was observed for Potato and sugarcane crop as 480955.65 MJ ha−1 and 808743.63 MJ ha−1 respectively. The maximum yield of potato crop was found as 22.58 t ha−1 with field shredder and mould board plough operation. The berseem crop recorded highest energy productivity as 0.36 kg MJ−1. The use of incorporation technique was mostly in potato crop, in-situ techniques for wheat, barley sowing and baler for vegetable, pulse, oilseed crops.

Suggested Citation

  • Chandel, Rupinder & Raj, Ritu & Kaur, Arpandeep & Singh, Kuldeep & Kataria, Sanjeev Kumar, 2024. "Energy and yield optimization of field and vegetable crops in heavy crop residue for Indian conditions-climate smart techniques for food security," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223029493
    DOI: 10.1016/j.energy.2023.129555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozkan, Burhan & Akcaoz, Handan & Fert, Cemal, 2004. "Energy input–output analysis in Turkish agriculture," Renewable Energy, Elsevier, vol. 29(1), pages 39-51.
    2. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    3. Canakci, M. & Akinci, I., 2006. "Energy use pattern analyses of greenhouse vegetable production," Energy, Elsevier, vol. 31(8), pages 1243-1256.
    4. Marzena Błażewicz-Woźniak & Dariusz Wach & Elżbieta Patkowska & Mirosław Konopiński, 2019. "The effect of cover crops on the yield of carrot (Daucus carota L.) in ploughless and conventional tillage," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 46(2), pages 57-64.
    5. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    6. Esengun, Kemal & Erdal, Gülistan & Gündüz, Orhan & Erdal, Hilmi, 2007. "An economic analysis and energy use in stake-tomato production in Tokat province of Turkey," Renewable Energy, Elsevier, vol. 32(11), pages 1873-1881.
    7. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    8. Yilmaz, Ibrahim & Akcaoz, Handan & Ozkan, Burhan, 2005. "An analysis of energy use and input costs for cotton production in Turkey," Renewable Energy, Elsevier, vol. 30(2), pages 145-155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    2. Torki-Harchegani, Mehdi & Ebrahimi, Rahim & Mahmoodi-Eshkaftaki, Mahmood, 2015. "Almond production in Iran: An analysis of energy use efficiency (2008–2011)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 217-224.
    3. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    4. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    5. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    6. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    7. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    8. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    9. Ali Mostafaeipour & Mohammad Bagher Fakhrzad & Sajad Gharaat & Mehdi Jahangiri & Joshuva Arockia Dhanraj & Shahab S. Band & Alibek Issakhov & Amir Mosavi, 2020. "Machine Learning for Prediction of Energy in Wheat Production," Agriculture, MDPI, vol. 10(11), pages 1-19, October.
    10. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    11. Iosvany López-Sandin & Guadalupe Gutiérrez-Soto & Adriana Gutiérrez-Díez & Nancy Medina-Herrera & Edgar Gutiérrez-Castorena & Francisco Zavala-García, 2019. "Evaluation of the Use of Energy in the Production of Sweet Sorghum ( Sorghum Bicolor (L.) Moench) under Different Production Systems," Energies, MDPI, vol. 12(9), pages 1-13, May.
    12. Alireza Koocheki & Reza Ghorbani & Farzad Mondani & Yaser Alizade, 2011. "Pulses Production Systems in Term of Energy Use Efficiency and Economical Analysis in Iran," International Journal of Energy Economics and Policy, Econjournals, vol. 1(4), pages 95-106.
    13. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    14. Kizilaslan, Halil, 2009. "Input-output energy analysis of cherries production in Tokat Province of Turkey," Applied Energy, Elsevier, vol. 86(7-8), pages 1354-1358, July.
    15. Ghorbani, Reza & Mondani, Farzad & Amirmoradi, Shahram & Feizi, Hassan & Khorramdel, Surror & Teimouri, Mozhgan & Sanjani, Sara & Anvarkhah, Sepideh & Aghel, Hassan, 2011. "A case study of energy use and economical analysis of irrigated and dryland wheat production systems," Applied Energy, Elsevier, vol. 88(1), pages 283-288, January.
    16. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    17. Heidari, M.D. & Omid, M., 2011. "Energy use patterns and econometric models of major greenhouse vegetable productions in Iran," Energy, Elsevier, vol. 36(1), pages 220-225.
    18. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    19. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    20. R. Fadavi & A. Keyhani & S.S. Mohtasebi, 2011. "An analysis of energy use, input costs and relation between energy inputs and yield of apple orchard," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 57(3), pages 88-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223029493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.