IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223020856.html
   My bibliography  Save this article

Grandfathering or benchmarking? The performance of implementing blockchain technology in a low-carbon supply chain

Author

Listed:
  • Wang, Miaomiao
  • Wu, Jun
  • Chen, Xinyu
  • Zhu, Xiaoxi

Abstract

Blockchain can make the production process transparent and increase consumer recognition. With regard to the grandfathering and benchmarking, which are two widely implemented carbon regulation schemes in the industrial field, how will the use of blockchain perform asymmetric cost effects and emission reduction driving effects on these two carbon policies? From the perspective of carbon reduction and supply chain stakeholders, which regulation scheme should be adopted is an important issue that deserves attention. By analyzing the performances of two carbon allocation mechanisms with and without blockchain, we have the following findings: The implementation of benchmarking mechanism can better stimulate the manufacturer's enthusiasm for emission reduction, and the retailer also prefers benchmarking, regardless of whether the blockchain employed or not; There exists a situation where a higher unit blockchain cost leads to a lower total carbon emission, and unit improvement in environmental performance may not necessarily improve overall environmental performance; We define the Pareto regions in which the interests of supply chain stakeholders and the environmental performance of the supply chain can be improved simultaneously by adopting blockchain. We also investigate the impacts of consumer sensitivity to blockchain technology, carbon reduction cost and carbon trading price on the Pareto regions.

Suggested Citation

  • Wang, Miaomiao & Wu, Jun & Chen, Xinyu & Zhu, Xiaoxi, 2023. "Grandfathering or benchmarking? The performance of implementing blockchain technology in a low-carbon supply chain," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020856
    DOI: 10.1016/j.energy.2023.128691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Shivam & Modgil, Sachin & Choi, Tsan-Ming & Kumar, Ajay & Antony, Jiju, 2023. "Influences of artificial intelligence and blockchain technology on financial resilience of supply chains," International Journal of Production Economics, Elsevier, vol. 261(C).
    2. Choi, Tsan-Ming, 2019. "Blockchain-technology-supported platforms for diamond authentication and certification in luxury supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 17-29.
    3. Yousefi, Samuel & Mohamadpour Tosarkani, Babak, 2022. "An analytical approach for evaluating the impact of blockchain technology on sustainable supply chain performance," International Journal of Production Economics, Elsevier, vol. 246(C).
    4. Ozawa, A. & Tsani, T. & Kudoh, Y., 2022. "Japan's pathways to achieve carbon neutrality by 2050 – Scenario analysis using an energy modeling methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Chi, Yuan-ying & Zhao, Hao & Hu, Yu & Yuan, Yong-ke & Pang, Yue-xia, 2022. "The impact of allocation methods on carbon emission trading under electricity marketization reform in China: A system dynamics analysis," Energy, Elsevier, vol. 259(C).
    6. Kuiti, Mithu Rani & Ghosh, Debabrata & Basu, Preetam & Bisi, Arnab, 2020. "Do cap-and-trade policies drive environmental and social goals in supply chains: Strategic decisions, collaboration, and contract choices," International Journal of Production Economics, Elsevier, vol. 223(C).
    7. Zetterberg, Lars, 2014. "Benchmarking in the European Union Emissions Trading System: Abatement incentives," Energy Economics, Elsevier, vol. 43(C), pages 218-224.
    8. Geraldo Ferrer & Jayashankar M. Swaminathan, 2006. "Managing New and Remanufactured Products," Management Science, INFORMS, vol. 52(1), pages 15-26, January.
    9. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2023. "Fossil fuels subsidy removal and the EU carbon neutrality policy," Energy Economics, Elsevier, vol. 119(C).
    10. Niu, Baozhuang & Dong, Jian & Liu, Yaoqi, 2021. "Incentive alignment for blockchain adoption in medicine supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yande Gong & Xinze Jiang & Zhe Wang & Jizhou Zhan, 2024. "Considering Blockchain Technology and Fairness Concerns for Supply Chain Pricing Decisions under Carbon Cap-and-Trade Mechanism," Mathematics, MDPI, vol. 12(16), pages 1-32, August.
    2. Xu, Xiaoping & Yan, Luling & Choi, Tsan-Ming & Cheng, T.C.E., 2023. "When Is It Wise to Use Blockchain for Platform Operations with Remanufacturing?," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1073-1090.
    3. Pattanayak, Sirsha & Ramkumar, M. & Goswami, Mohit & Rana, Nripendra P., 2024. "Blockchain technology and supply chain performance: The role of trust and relational capabilities," International Journal of Production Economics, Elsevier, vol. 271(C).
    4. Niu, Baozhuang & Ruan, Yiyuan & Xu, Haotao, 2023. "Turn a blind eye? E-tailer's blockchain participation considering upstream competition between copycats and brands," International Journal of Production Economics, Elsevier, vol. 265(C).
    5. Yu, Yugang & Luo, Yifei & Shi, Ye, 2022. "Adoption of blockchain technology in a two-stage supply chain: Spillover effect on workforce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    6. Changhua Liao & Qihui Lu & Ying Shui, 2022. "Governmental Anti-Pandemic and Subsidy Strategies for Blockchain-Enabled Food Supply Chains in the Post-Pandemic Era," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    7. Li, Qingying & Ma, Manqiong & Shi, Tianqin & Zhu, Chen, 2022. "Green investment in a sustainable supply chain: The role of blockchain and fairness," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    8. Kuo, Hsin-Tsz & Choi, Tsan-Ming, 2024. "Metaverse in transportation and logistics operations: An AI-supported digital technological framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    9. Wang, Manman & Yang, Feng & Shan, Feifei & Guo, Yu, 2024. "Blockchain adoption for combating remanufacturing perceived risks in a reverse supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    10. Li, Zhiwen & Xu, Xianhao & Bai, Qingguo & Guan, Xu & Zeng, Kuan, 2021. "The interplay between blockchain adoption and channel selection in combating counterfeits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    11. Liu, Samuel Shuai & Hua, Guowei & Ma, Benedict Jun & Cheng, T.C.E., 2023. "Competition between green and non-green products in the blockchain era," International Journal of Production Economics, Elsevier, vol. 264(C).
    12. Sun, Mingyao & Chai, Qiangfei & Ng, Chi To, 2023. "Managing the quality-speed tradeoff in blockchain-supported healthcare diagnostic services," Omega, Elsevier, vol. 120(C).
    13. Tianjian Yang & Chunmei Li & Xiongping Yue & Beibei Zhang, 2022. "Decisions for Blockchain Adoption and Information Sharing in a Low Carbon Supply Chain," Mathematics, MDPI, vol. 10(13), pages 1-23, June.
    14. Cao, Yifan & Shen, Bin, 2022. "Adopting blockchain technology to block less sustainable products’ entry in global trade," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    15. Biswas, Debajyoti & Jalali, Hamed & Ansaripoor, Amir H. & De Giovanni, Pietro, 2023. "Traceability vs. sustainability in supply chains: The implications of blockchain," European Journal of Operational Research, Elsevier, vol. 305(1), pages 128-147.
    16. Liu, Shuai & Hua, Guowei & Kang, Yuxuan & Edwin Cheng, T.C. & Xu, Yadong, 2022. "What value does blockchain bring to the imported fresh food supply chain?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    17. Sun, Xuting & Kuo, Yong-Hong & Xue, Weili & Li, Yanzhi, 2024. "Technology-driven logistics and supply chain management for societal impacts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    18. Cao, Yu & Yi, Chaoqun & Wan, Guangyu & Hu, Hanli & Li, Qingsong & Wang, Shouyang, 2022. "An analysis on the role of blockchain-based platforms in agricultural supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    19. Li, Zhiwen & Xu, Xianhao & Bai, Qingguo & Chen, Cheng & Wang, Hongwei & Xia, Peng, 2023. "Implications of information sharing on blockchain adoption in reducing carbon emissions: A mean–variance analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    20. Niu, Baozhuang & Xu, Haotao & Chen, Lei, 2022. "Creating all-win by blockchain in a remanufacturing supply chain with consumer risk-aversion and quality untrust," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.