IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024015.html
   My bibliography  Save this article

Pore-scale mechanisms and hysteresis effect during multi-cycle injection and production process in underground hydrogen storage reservoir

Author

Listed:
  • Gao, Jidong
  • Kong, Debin
  • Peng, Yingfeng
  • Zhou, Yunzhu
  • Liu, Yuwei
  • Zhu, Weiyao

Abstract

Injection and production of hydrogen gas storage through multiple cycles often lead to significant variations in the gas water occurrence state and the associated relative permeability curve (RPC). In this study, a visual sandstone etching model and numerical simulation method are used to analyze the alteration of the occurrence state after multiple cycles of gas-water inter drive. The influence of the occurrence state on the variation of the RPC is revealed. The experimental results demonstrate that with an increasing number of cyclic injection and production cycles, the gas saturation in the model shows an upward trend, rising from 64.26% to 73.89%. However, the water block phenomenon also increases, leading to only a small amount of gas bubbles undergoing discrete flow, resulting in a reduction of the porosity utilization from 51.06 % to 40.57 %. In different injection and production cycles, the liquid phase at the corners and blind ends of large pores is difficult to displace. The continuity of gas-liquid distribution enhances with the increase in injection and production cycles. The phenomenon of phase trapping during hydrogen multi-cycle injection is evident, and the relative permeability of the gas phase rapidly declines during the imbibition first stage. The difference in gas saturation between the displacement and imbibition processes gradually decreases, reducing from 0.314 to 0.054. The Carlson model achieves a final simulation accuracy of over 90 % for wettability hysteresis. The numerical simulation results indicate that the modified relative permeability curves can more accurately simulate the changes in hydrogen gas storage during injection and production. The relative error of the hydrogen saturation in the uppermost layer of the reservoir at 1673 days of operation is 8.51 %. And the pressure increase is 13.32% without considering the wetting hysteresis model.

Suggested Citation

  • Gao, Jidong & Kong, Debin & Peng, Yingfeng & Zhou, Yunzhu & Liu, Yuwei & Zhu, Weiyao, 2023. "Pore-scale mechanisms and hysteresis effect during multi-cycle injection and production process in underground hydrogen storage reservoir," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024015
    DOI: 10.1016/j.energy.2023.129007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Zhang & Feifei Fang & Wei Lin & Shusheng Gao & Yalong Li & Qi Li & Yi Yang, 2020. "Research on Injection-Production Capability and Seepage Characteristics of Multi-Cycle Operation of Underground Gas Storage in Gas Field—Case Study of the Wen 23 Gas Storage," Energies, MDPI, vol. 13(15), pages 1-17, July.
    2. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    3. Wang, Heng & Kou, Zuhao & Ji, Zemin & Wang, Shouchuan & Li, Yunfei & Jiao, Zunsheng & Johnson, Matthew & McLaughlin, J. Fred, 2023. "Investigation of enhanced CO2 storage in deep saline aquifers by WAG and brine extraction in the Minnelusa sandstone, Wyoming," Energy, Elsevier, vol. 265(C).
    4. Jinkai Wang & Hengyi Liu & Jinliang Zhang & Jun Xie, 2018. "Lost Gas Mechanism and Quantitative Characterization during Injection and Production of Water-Flooded Sandstone Underground Gas Storage," Energies, MDPI, vol. 11(2), pages 1-26, January.
    5. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    6. Li, Yi & Yu, Hao & Li, Yi & Liu, Yaning & Zhang, Guijin & Tang, Dong & Jiang, Zhongming, 2020. "Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers," Renewable Energy, Elsevier, vol. 151(C), pages 1318-1338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Zhihao & Yao, Jun & Liu, Lei & Sun, Hai, 2024. "Efficiently reconstructing high-quality details of 3D digital rocks with super-resolution Transformer," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    2. Wang, Jieming & Wang, Jinkai & Xu, Shujuan & Wu, Rui & Lv, Jian & Li, Zhi & Li, Chun & Zhang, Jinliang & Zhao, Lei & Xie, Jun & Zhang, Jianguo, 2022. "A novel mode for “three zones” collaborative reconstruction of underground gas storage and its application to large, low-permeability lithologic gas reservoirs," Energy, Elsevier, vol. 253(C).
    3. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    4. Kévin Nadarajah & Laurent Brun & Stéphanie Bordel & Emeline Ah-Tchine & Anissa Dumesnil & Antoine Marques Mourato & Jacques Py & Laurent Jammes & Xavier Arnauld De Sartre & Alain Somat, 2024. "A Three-Stage Psychosocial Engineering-Based Method to Support Controversy and Promote Mutual Understanding between Stakeholders: The Case of CO 2 Geological Storage," Energies, MDPI, vol. 17(5), pages 1-15, February.
    5. Shi, Yu & Yang, Zijiang & Peng, Junlan & Zhou, Mengmeng & Song, Xianzhi & Cui, Qiliang & Fan, Meng, 2024. "CO2 storage characteristics and migration patterns under different abandoned oil and gas well types," Energy, Elsevier, vol. 292(C).
    6. Yi Zhang & Wenjing Li & Guodong Chen, 2022. "A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns," Energies, MDPI, vol. 15(12), pages 1-20, June.
    7. Lekun Zhao & Guoqiang Sang & Jialei Ding & Jiangfei Sun & Tongjing Liu & Yuedong Yao, 2023. "Research on the Timing of WAG Intervention in Low Permeability Reservoir CO 2 Flooding Process to Improve CO 2 Performance and Enhance Recovery," Energies, MDPI, vol. 16(21), pages 1-24, October.
    8. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    9. Li, Yi & Yu, Hao & Xiao, Yanling & Li, Yi & Liu, Yinjiang & Luo, Xian & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2023. "Numerical verification on the feasibility of compressed carbon dioxide energy storage in two aquifers," Renewable Energy, Elsevier, vol. 207(C), pages 743-764.
    10. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Wang, Jianfeng & Zhu, Suyang & Ma, Haoming & Wu, Zhengbin, 2023. "Optimized lower pressure limit for condensate underground gas storage using a dynamic pseudo-component model," Energy, Elsevier, vol. 285(C).
    11. Li, Yi & Yu, Hao & Li, Yi & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2024. "Study on the applicability of compressed carbon dioxide energy storage in aquifers under different daily and weekly cycles," Renewable Energy, Elsevier, vol. 222(C).
    12. Wu, Qianhui & Ding, Lei & Zhao, Lun & Alhashboul, Almohannad A. & Almajid, Muhammad M. & Patil, Pramod & Zhao, Wenqi & Fan, Zifei, 2024. "CO2 soluble surfactants for carbon storage in carbonate saline aquifers with achievable injectivity: Implications from the continuous CO2 injection study," Energy, Elsevier, vol. 290(C).
    13. Mengqi Wang & Jun Xie & Fajun Guo & Yawei Zhou & Xudong Yang & Ziang Meng, 2020. "Determination of NMR T 2 Cutoff and CT Scanning for Pore Structure Evaluation in Mixed Siliciclastic–Carbonate Rocks before and after Acidification," Energies, MDPI, vol. 13(6), pages 1-29, March.
    14. Mohammad Hossein Golestan & Carl Fredrik Berg, 2024. "Simulations of CO 2 Dissolution in Porous Media Using the Volume-of-Fluid Method," Energies, MDPI, vol. 17(3), pages 1-21, January.
    15. Ebrahim Fathi & Danilo Arcentales & Fatemeh Belyadi, 2023. "Impacts of Different Operation Conditions and Geological Formation Characteristics on CO 2 Sequestration in Citronelle Dome, Alabama," Energies, MDPI, vol. 16(7), pages 1-20, April.
    16. Long, Keji & Tang, Yong & He, Youwei & Luo, Yulong & Hong, Yinghe & Sun, Yu & Rui, Zhenhua, 2024. "Full-cycle enhancing condensate recovery-underground gas storage by integrating cyclic gas flooding and storage from gas condensate reservoirs," Energy, Elsevier, vol. 293(C).
    17. Junming Lao & Haoran Cheng & Yuhe Wang & Hongqing Song, 2024. "Micro/Nanoparticle Characteristics and Flow in Porous Media: A Review towards Enhanced Oil Recovery," Energies, MDPI, vol. 17(16), pages 1-25, August.
    18. Li, Yi & Liu, Yaning & Hu, Bin & Li, Yi & Dong, Jiawei, 2020. "Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy," Applied Energy, Elsevier, vol. 279(C).
    19. Muhammad Zain-Ul-Abedin & Andreas Henk, 2023. "Thermal-Hydraulic-Mechanical (THM) Modelling of Short-Term Gas Storage in a Depleted Gas Reservoir—A Case Study from South Germany," Energies, MDPI, vol. 16(8), pages 1-29, April.
    20. Mengfei Zhou & Xizhe Li & Yong Hu & Xuan Xu & Liangji Jiang & Yalong Li, 2021. "Physical Simulation Experimental Technology and Mechanism of Water Invasion in Fractured-Porous Gas Reservoir: A Review," Energies, MDPI, vol. 14(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.