IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223006898.html
   My bibliography  Save this article

Optimizing vertical alignment of underground metro for energy saving of train operation

Author

Listed:
  • Wang, Qian
  • Bai, Yun
  • Chen, Yao
  • Fu, Qian
  • Ho, Tin Kin

Abstract

Existing studies on saving energy consumption of train movement (ECTM) have focused mainly on optimizing train operation and service timetable. However, the ECTM is also significantly affected by metro vertical alignment. This paper presents a mathematical model for optimizing the vertical alignment between any two adjacent underground metro stations, with the objective of minimizing the total ECTM in both train-running directions. The model takes into account train operation with variable speed limits and gradients in the calculations of the ECTM, and a number of constraints involving local geographical conditions and design criteria set by the Code for Design of Metro in China. To solve the proposed model, a customized genetic algorithm (GA) with an indirect coding method is developed. Case studies on a real-world metro line show that the vertical alignments optimized by the model outperform that designed by experienced consultants in the ECTM savings; and the average energy saving rate on the total ECTM in a train's round trip exceeds 5%. In addition, the principles of designing metro vertical alignment with particular consideration of saving ECTM are summarized, which can be of great reference value to future vertical alignment design.

Suggested Citation

  • Wang, Qian & Bai, Yun & Chen, Yao & Fu, Qian & Ho, Tin Kin, 2023. "Optimizing vertical alignment of underground metro for energy saving of train operation," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006898
    DOI: 10.1016/j.energy.2023.127295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223006898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    2. Zhou, Wenliang & Huang, Yu & Deng, Lianbo & Qin, Jin, 2023. "Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail," Energy, Elsevier, vol. 263(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yu & Zhou, Wenliang & Qin, Jin & Deng, Lianbo, 2023. "Optimization of energy-efficiency train schedule considering passenger demand and rolling stock circulation plan of subway line," Energy, Elsevier, vol. 275(C).
    2. Ziyu Wu & Chunhai Gao & Tao Tang, 2021. "An Optimal Train Speed Profile Planning Method for Induction Motor Traction System," Energies, MDPI, vol. 14(16), pages 1-14, August.
    3. Li, Jiajie & Bai, Yun & Chen, Yao & Yang, Lingling & Wang, Qian, 2022. "A two-stage stochastic optimization model for integrated tram timetable and speed control with uncertain dwell times," Energy, Elsevier, vol. 260(C).
    4. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    5. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    6. Zhang, Lang & He, Deqiang & He, Yan & Liu, Bin & Chen, Yanjun & Shan, Sheng, 2022. "Real-time energy saving optimization method for urban rail transit train timetable under delay condition," Energy, Elsevier, vol. 258(C).
    7. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    8. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    9. Li, Wenxin & Peng, Qiyuan & Wen, Chao & Wang, Pengling & Lessan, Javad & Xu, Xinyue, 2020. "Joint optimization of delay-recovery and energy-saving in a metro system: A case study from China," Energy, Elsevier, vol. 202(C).
    10. Elnaz Ghorbani & Tristan Fluechter & Laura Calvet & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2023. "Optimizing Energy Consumption in Smart Cities’ Mobility: Electric Vehicles, Algorithms, and Collaborative Economy," Energies, MDPI, vol. 16(3), pages 1-19, January.
    11. Ding, Heng & Di, Yunran & Zheng, Xiaoyan & Liu, Kai & Zhang, Weihua & Zheng, Lingling, 2021. "Passenger arrival distribution model and riding guidance on an urban rail transit platform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    12. Feng, Zongbao & Chen, Weiya & Liu, Yang & Chen, Hongyu & Skibniewski, Mirosław J., 2023. "Long-term equilibrium relationship analysis and energy-saving measures of metro energy consumption and its influencing factors based on cointegration theory and an ARDL model," Energy, Elsevier, vol. 263(PD).
    13. Ning, Jingjie & Zhou, Yonghua & Long, Fengchu & Tao, Xin, 2018. "A synergistic energy-efficient planning approach for urban rail transit operations," Energy, Elsevier, vol. 151(C), pages 854-863.
    14. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    15. Zhou, Wenliang & Huang, Yu & Deng, Lianbo & Qin, Jin, 2023. "Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail," Energy, Elsevier, vol. 263(PA).
    16. Liu, Minzhang & Zhu, Chunguang & Zhang, Huan & Zheng, Wandong & You, Shijun & Campana, Pietro Elia & Yan, Jinyue, 2019. "The environment and energy consumption of a subway tunnel by the influence of piston wind," Applied Energy, Elsevier, vol. 246(C), pages 11-23.
    17. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2019. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 1-19.
    18. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    19. Yang, Songpo & Chen, Yanyan & Dong, Zhurong & Wu, Jianjun, 2023. "A collaborative operation mode of energy storage system and train operation system in power supply network," Energy, Elsevier, vol. 276(C).
    20. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.