IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v26y2001i9p855-868.html
   My bibliography  Save this article

Dehydration of natural gas using solid desiccants

Author

Listed:
  • Gandhidasan, P
  • Al-Farayedhi, Abdulghani A
  • Al-Mubarak, Ali A

Abstract

Natural gas is an important source of primary energy that, under normal production conditions, is saturated with water vapor. Water vapor increases natural gases' corrosivity, especially when acid gases are present. Several methods can be used to dry natural gas and, in this paper, a solid desiccant dehydrator using silica gel is considered due to its ability to provide extremely low dew points. The design analysis of a two-tower, silica gel dehydration unit to dry one million standard m3 of natural gas per day is presented in this paper and the effects of various operating parameters on the design of the unit are discussed. The study also covers the analysis of energy requirements for the regeneration of the weak desiccant bed based on some simplified assumptions and it is found that the higher the regeneration temperature, the smaller are the required quantities of regeneration gas.

Suggested Citation

  • Gandhidasan, P & Al-Farayedhi, Abdulghani A & Al-Mubarak, Ali A, 2001. "Dehydration of natural gas using solid desiccants," Energy, Elsevier, vol. 26(9), pages 855-868.
  • Handle: RePEc:eee:energy:v:26:y:2001:i:9:p:855-868
    DOI: 10.1016/S0360-5442(01)00034-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544201000342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(01)00034-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Simple equations to correlate theoretical stages and operating reflux in fractionators," Energy, Elsevier, vol. 35(3), pages 1439-1446.
    2. Wansheng Yang & Jiayun Ren & Zhongqi Lin & Zhangyuan Wang & Xudong Zhao, 2018. "Study on Dehumidification Performance of a Multi-Stage Internal Cooling Solid Desiccant Adsorption Packed Bed," Energies, MDPI, vol. 11(11), pages 1-19, November.
    3. Bahadori, Alireza & Vuthaluru, Hari B., 2009. "Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems," Energy, Elsevier, vol. 34(11), pages 1910-1916.
    4. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:26:y:2001:i:9:p:855-868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.