IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222026998.html
   My bibliography  Save this article

Transitions of thermoacoustic modes and flame dynamics in a centrally-staged swirl combustor

Author

Listed:
  • Wang, Xinyao
  • Han, Xiao
  • Sung, Chih-Jen

Abstract

In the start-up process of practical gas turbine applications, the modulation of operating condition, especially the variation of global equivalence ratios (ϕglo), could cause the variations of stability regimes. The above process is accompanied by the increase of total air flow rates (ṁair) when approaching the stable operation condition, and thus the effect of this parameter should also be considered in the operating condition modulation process. This work presents an experimental investigation into the transitions of thermoacoustic modes and flame dynamics in a centrally-staged swirl combustor over a range of ϕglo and ṁair. The present thermoacoustic system exhibits two transitions of thermoacoustic modes with ϕglo variation, showing distinct characteristics of pressure oscillation (p′) and flame structures. To further explore the detailed variation of p′ characteristics and its link to flame dynamics during two transitions, a nonlinear dynamic analysis of p′ including its phase and recurrence plots as well as a proper orthogonal decomposition (POD) study have been conducted. The thermoacoustic network analysis and local Rayleigh index analysis have clarified the mode transition mechanism with varying ϕglo and ṁair. The present results can provide a guideline for quantifying the stability regimes of fuel-flexible combustors during the operating condition modulation processes.

Suggested Citation

  • Wang, Xinyao & Han, Xiao & Sung, Chih-Jen, 2023. "Transitions of thermoacoustic modes and flame dynamics in a centrally-staged swirl combustor," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026998
    DOI: 10.1016/j.energy.2022.125813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhihao & Liu, Xiao & Gong, Yaozhen & Yang, Yang & Tang, Zijia & Liu, Gang & Deng, Fuquan & Yang, Jialong & Zheng, Hongtao, 2020. "Experimental study of stratified swirl flame dynamics in a model gas turbine combustor," Energy, Elsevier, vol. 211(C).
    2. Song, Heng & Han, Xiao & Su, Tong & Xue, Xin & Zhang, Chi & Sung, Chih-Jen, 2021. "Parametric study of the slope confinement for passive control in a centrally-staged swirl burner," Energy, Elsevier, vol. 233(C).
    3. Wang, Xinyao & Han, Meng & Han, Xiao & Chi Zhang, & Sung, Chih-Jen, 2021. "Flame structures and thermoacoustic instabilities of centrally-staged swirl flames operating in different partially-premixed modes," Energy, Elsevier, vol. 236(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Guangpu & Liu, Xiao & Zhang, Zhihao & Li, Shengnan & Liu, Enhui & Zheng, Hongtao, 2023. "The effects of premixed pilot-stage on combustion instabilities in stratified swirling flames: A large eddy simulation study," Energy, Elsevier, vol. 274(C).
    2. Belal, Belal Y. & Li, Gesheng & Zhang, Zunhua & El-Batsh, H.M. & Moneib, Hany A. & Attia, Ali M.A., 2021. "The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames," Energy, Elsevier, vol. 228(C).
    3. Qi, Lei & Dong, Jingnan & Hong, Wenpeng & Wang, Mingtian & Lu, Tao, 2023. "Investigation of rotating detonation gas turbine cycle under design and off-design conditions," Energy, Elsevier, vol. 264(C).
    4. Rahimi, Sajjad & Mazaheri, Kiumars & Alipoor, Alireza & Mohammadpour, Amirreza, 2023. "The effect of hydrogen addition on methane-air flame in a stratified swirl burner," Energy, Elsevier, vol. 265(C).
    5. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    6. Wang, Xinyao & Han, Meng & Han, Xiao & Chi Zhang, & Sung, Chih-Jen, 2021. "Flame structures and thermoacoustic instabilities of centrally-staged swirl flames operating in different partially-premixed modes," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222026998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.