IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021739.html
   My bibliography  Save this article

Data-driven Offline Reinforcement Learning for HVAC-systems

Author

Listed:
  • Blad, Christian
  • Bøgh, Simon
  • Kallesøe, Carsten Skovmose

Abstract

This paper presents a novel framework for Offline Reinforcement Learning (RL) with online fine tuning for Heating Ventilation and Air-conditioning (HVAC) systems. The framework presents a method to do pre-training in a black box model environment, where the black box models are built on data acquired under a traditional control policy. The paper focuses on the application of Underfloor Heating (UFH) with an air-to-water-based heat pump. However, the framework should also generalize to other HVAC control applications. Because Black box methods are used is there little to no commissioning time when applying this framework to other buildings/simulations beyond the one presented in this study. This paper explores and deploys Artificial Neural Network (ANN) based methods to design efficient controllers. Two ANN methods are tested and presented in this paper; a Multilayer Perceptron (MLP) method and a Long Short Term Memory (LSTM) based method. It is found that the LSTM-based method reduces the prediction error by 45% when compared with a MLP model. Additionally, different network architectures are tested. It is found that by creating a new model for each time step, performance can be improved additionally 19%. By using these models in the framework presented in this paper, it is shown that a Multi-Agent RL algorithm can be deployed without ever performing worse than an industrial controller. Furthermore, it is shown that if building data from a Building Management System (BMS) is available, an RL agent can be deployed which performs close to optimally from the first day of deployment. An optimal control policy reduces the cost of heating by 19.4 % when compared to a traditional control policy in the simulation presented in this paper.

Suggested Citation

  • Blad, Christian & Bøgh, Simon & Kallesøe, Carsten Skovmose, 2022. "Data-driven Offline Reinforcement Learning for HVAC-systems," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021739
    DOI: 10.1016/j.energy.2022.125290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazmi, Hussain & Suykens, Johan & Balint, Attila & Driesen, Johan, 2019. "Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads," Applied Energy, Elsevier, vol. 238(C), pages 1022-1035.
    2. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    3. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    4. Christian Blad & Simon Bøgh & Carsten Kallesøe, 2021. "A Multi-Agent Reinforcement Learning Approach to Price and Comfort Optimization in HVAC-Systems," Energies, MDPI, vol. 14(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Homod, Raad Z. & Mohammed, Hayder Ibrahim & Abderrahmane, Aissa & Alawi, Omer A. & Khalaf, Osamah Ibrahim & Mahdi, Jasim M. & Guedri, Kamel & Dhaidan, Nabeel S. & Albahri, A.S. & Sadeq, Abdellatif M. , 2023. "Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent," Applied Energy, Elsevier, vol. 351(C).
    2. Zhuang, Dian & Gan, Vincent J.L. & Duygu Tekler, Zeynep & Chong, Adrian & Tian, Shuai & Shi, Xing, 2023. "Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning," Applied Energy, Elsevier, vol. 338(C).
    3. Blad, C. & Bøgh, S. & Kallesøe, C. & Raftery, Paul, 2023. "A laboratory test of an Offline-trained Multi-Agent Reinforcement Learning Algorithm for Heating Systems," Applied Energy, Elsevier, vol. 337(C).
    4. Chen, Minghao & Xie, Zhiyuan & Sun, Yi & Zheng, Shunlin, 2023. "The predictive management in campus heating system based on deep reinforcement learning and probabilistic heat demands forecasting," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Dawei & Ye, Yujian & Papadaskalopoulos, Dimitrios & Strbac, Goran, 2021. "Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach," Applied Energy, Elsevier, vol. 292(C).
    2. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Blad, C. & Bøgh, S. & Kallesøe, C. & Raftery, Paul, 2023. "A laboratory test of an Offline-trained Multi-Agent Reinforcement Learning Algorithm for Heating Systems," Applied Energy, Elsevier, vol. 337(C).
    4. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    5. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    6. Christian Blad & Simon Bøgh & Carsten Kallesøe, 2021. "A Multi-Agent Reinforcement Learning Approach to Price and Comfort Optimization in HVAC-Systems," Energies, MDPI, vol. 14(22), pages 1-20, November.
    7. Yoon, Ah-Yun & Kim, Young-Jin & Zakula, Tea & Moon, Seung-Ill, 2020. "Retail electricity pricing via online-learning of data-driven demand response of HVAC systems," Applied Energy, Elsevier, vol. 265(C).
    8. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    9. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    10. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    11. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    12. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    13. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    14. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    15. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    16. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    17. Ande Chang & Yuting Ji & Chunguang Wang & Yiming Bie, 2024. "CVDMARL: A Communication-Enhanced Value Decomposition Multi-Agent Reinforcement Learning Traffic Signal Control Method," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
    18. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    19. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    20. He, Jing & Liu, Xinglu & Duan, Qiyao & Chan, Wai Kin (Victor) & Qi, Mingyao, 2023. "Reinforcement learning for multi-item retrieval in the puzzle-based storage system," European Journal of Operational Research, Elsevier, vol. 305(2), pages 820-837.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.