IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001876.html
   My bibliography  Save this article

Machine learning assisted relative permeability upscaling for uncertainty quantification

Author

Listed:
  • Wang, Yanji
  • Li, Hangyu
  • Xu, Jianchun
  • Liu, Shuyang
  • Wang, Xiaopu

Abstract

Traditional two-phase relative permeability upscaling entails the computation of upscaled relative permeability functions for each coarse block (or interface). The procedure can be extremely time-consuming especially for cases with multiple (hundreds of) geological realizations as commonly used in subsurface uncertainty quantification or optimization. In this paper, we develop a machine learning assisted relative permeability upscaling method, in which the flow-based two-phase upscaling is performed for only a small portion of the coarse blocks (or interfaces), while the upscaled relative permeability functions for the rest of the coarse blocks (or interfaces) are quickly computed by machine learning algorithms. The upscaling procedure was tested for generic (left to right) flow problems using 2D models for scenarios involving multiple realizations. Both Gaussian and channelized models with standard boundary conditions and effective flux boundary conditions (EFBCs) are considered. Numerical results have shown that the coarse-scale simulation results using the newly developed machine learning assisted upscaling are of similar accuracy to the coarse results using full numerical upscaling at both ensemble and realization-by-realization levels. Because the full flow-based upscaling is only performed for a small fraction of the models, significant speedups are achieved.

Suggested Citation

  • Wang, Yanji & Li, Hangyu & Xu, Jianchun & Liu, Shuyang & Wang, Xiaopu, 2022. "Machine learning assisted relative permeability upscaling for uncertainty quantification," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001876
    DOI: 10.1016/j.energy.2022.123284
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shakouri, Sina & Mohammadzadeh-Shirazi, Maysam, 2023. "Modeling of asphaltic sludge formation during acidizing process of oil well reservoir using machine learning methods," Energy, Elsevier, vol. 285(C).
    2. Wang, Yanji & Li, Hangyu & Xu, Jianchun & Liu, Shuyang & Tan, Qizhi & Wang, Xiaopu, 2023. "Machine learning assisted two-phase upscaling for large-scale oil-water system," Applied Energy, Elsevier, vol. 337(C).
    3. Liao, Qinzhuo & Li, Gensheng & Tian, Shouceng & Song, Xianzhi & Lei, Gang & Liu, Xu & Chen, Weiqing & Patil, Shirish, 2023. "An efficient analytical approach for steady-state upscaling of relative permeability and capillary pressure," Energy, Elsevier, vol. 282(C).
    4. Tian, Weibing & Wu, Keliu & Chen, Zhangxin & Gao, Yanling & Li, Jing & Wang, Muyuan, 2022. "A relative permeability model considering nanoconfinement and dynamic contact angle effects for tight reservoirs," Energy, Elsevier, vol. 258(C).
    5. Fathy, Mohammad & Kazemzadeh Haghighi, Foojan & Ahmadi, Mohammad, 2024. "Uncertainty quantification of reservoir performance using machine learning algorithms and structured expert judgment," Energy, Elsevier, vol. 288(C).
    6. Xu Han & Dujie Hou & Xiong Cheng & Yan Li & Congkai Niu & Shuosi Chen, 2022. "Prediction of TOC in Lishui–Jiaojiang Sag Using Geochemical Analysis, Well Logs, and Machine Learning," Energies, MDPI, vol. 15(24), pages 1-25, December.
    7. Domitr, Paweł & Włostowski, Mateusz & Laskowski, Rafał & Jurkowski, Romuald, 2023. "Comparison of inverse uncertainty quantification methods for critical flow test," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.