IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs036054422200055x.html
   My bibliography  Save this article

Topological partition based multi-energy flow calculation method for complex integrated energy systems

Author

Listed:
  • Hu, Qinran
  • Liang, Yiheng
  • Ding, Haohui
  • Quan, Xiangjun
  • Wang, Qi
  • Bai, Linquan

Abstract

Multi-energy flow (MEF) calculation is essential for analyzing integrated energy systems (IES) with electricity, gas, and heat. However, for some hybrid-topology IES, conventional MEF calculation methods are hard to converge due to the complex topological structure. To this end, this paper proposes a topological partition based MEF calculation method. First, based on topological structure, the proposed method divides the original system into multiple blocks with only radial or looped topologies, and solves each block with suitable algorithms. This improvement can accelerate the calculation process and broaden the initial solutions range. Second, the proposed method sets the proper balance node of each block such that the convergence of each block becomes independent. This enables the non-convergent blocks can be identified easily. Third, the proposed method sets isobarometric nodes to get equivalent topology reconstruction, which makes the MEF calculation applicable for certain complex systems. Finally, a case study on the IES of Yangzhong City shows the effectiveness of the proposed method.

Suggested Citation

  • Hu, Qinran & Liang, Yiheng & Ding, Haohui & Quan, Xiangjun & Wang, Qi & Bai, Linquan, 2022. "Topological partition based multi-energy flow calculation method for complex integrated energy systems," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s036054422200055x
    DOI: 10.1016/j.energy.2022.123152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422200055X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    2. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Liu, Yuquan & Xiong, Wen, 2017. "An interval gas flow analysis in natural gas and electricity coupled networks considering the uncertainty of wind power," Applied Energy, Elsevier, vol. 201(C), pages 343-353.
    3. Zeng, Qing & Fang, Jiakun & Li, Jinghua & Chen, Zhe, 2016. "Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion," Applied Energy, Elsevier, vol. 184(C), pages 1483-1492.
    4. Sun, Qiuye & Dong, Qianyu & You, Shi & Li, Zhibo & Wang, Rui, 2020. "A unified energy flow analysis considering initial guesses in complex multi-energy carrier systems," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Abhimanyu & Padhy, Narayana Prasad, 2024. "Iterative convex relaxation of unbalanced power distribution system integrated multi-energy systems," Energy, Elsevier, vol. 294(C).
    2. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    3. Zhang, Yuanshi & Qian, Wenyan & Ye, Yujian & Li, Yang & Tang, Yi & Long, Yu & Duan, Meimei, 2023. "A novel non-intrusive load monitoring method based on ResNet-seq2seq networks for energy disaggregation of distributed energy resources integrated with residential houses," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yujia & Sun, Qiuye & Li, Yushuai & Sun, Chenghao & Chen, Zhe, 2023. "Damping technique empowered robust energy flow calculation for integrated energy systems," Applied Energy, Elsevier, vol. 343(C).
    2. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    3. Tian, Hang & Zhao, Haoran & Liu, Chunyang & Chen, Jian & Wu, Qiuwei & Terzija, Vladimir, 2022. "A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system," Applied Energy, Elsevier, vol. 314(C).
    4. Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2022. "Probabilistic energy flow calculation for regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 308(C).
    5. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    6. Yu Huang & Kai Yang & Weiting Zhang & Kwang Y. Lee, 2018. "Hierarchical Energy Management for the MultiEnergy Carriers System with Different Interest Bodies," Energies, MDPI, vol. 11(10), pages 1-18, October.
    7. Danko Vidović & Elis Sutlović & Matislav Majstrović, 2021. "A Unique Electrical Model for the Steady-State Analysis of a Multi-Energy System," Energies, MDPI, vol. 14(18), pages 1-23, September.
    8. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
    9. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    10. Lun Yang & Xia Zhao & Xinyi Li & Wei Yan, 2018. "Probabilistic Steady-State Operation and Interaction Analysis of Integrated Electricity, Gas and Heating Systems," Energies, MDPI, vol. 11(4), pages 1-21, April.
    11. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    12. He Huang & DaPeng Liang & Zhen Tong, 2018. "Integrated Energy Micro-Grid Planning Using Electricity, Heating and Cooling Demands," Energies, MDPI, vol. 11(10), pages 1-20, October.
    13. Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi, 2022. "Security assessment of electricity-gas-heat integrated energy systems based on the vulnerability index," Energy, Elsevier, vol. 249(C).
    14. Chen, Yuxin & Jiang, Yuewen, 2023. "Interval energy flow calculation method for electricity-heat-hydrogen integrated energy system considering the correlation between variables," Energy, Elsevier, vol. 263(PB).
    15. Gargari, Milad Zamani & Hagh, Mehrdad Tarafdar & Zadeh, Saeid Ghassem, 2021. "Preventive maintenance scheduling of multi energy microgrid to enhance the resiliency of system," Energy, Elsevier, vol. 221(C).
    16. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Zhou, Jing & Zhang, Li & Fan, Lin & Yang, Zhaoming & Xie, Fei & Zuo, Lili & Zhang, Jinjun, 2023. "A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model," Energy, Elsevier, vol. 263(PB).
    17. Wang, Cheng & Wei, Wei & Wang, Jianhui & Bi, Tianshu, 2019. "Convex optimization based adjustable robust dispatch for integrated electric-gas systems considering gas delivery priority," Applied Energy, Elsevier, vol. 239(C), pages 70-82.
    18. Xi, Yufei & Zeng, Qing & Chen, Zhe & Lund, Henrik & Conejo, Antonio J., 2020. "A market equilibrium model for electricity, gas and district heating operations," Energy, Elsevier, vol. 206(C).
    19. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    20. Szoplik, Jolanta & Stelmasińska, Paulina, 2019. "Analysis of gas network storage capacity for alternative fuels in Poland," Energy, Elsevier, vol. 172(C), pages 343-353.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s036054422200055x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.