IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031066.html
   My bibliography  Save this article

System integration of multi-grade exploitation of biogas chemical energy driven by solar energy

Author

Listed:
  • Su, Bosheng
  • Lin, Feng
  • Ma, Jingyuan
  • Huang, Shenghua
  • Wang, Yilin
  • Zhang, Xiaodong
  • Han, Wei
  • Wang, Hongsheng

Abstract

Solar-driven biogas reforming is an efficient way to produce hydrogen or other chemical product in the near and medium-term by multi-renewable energy complement. However, direct biogas reforming is prone to coke formation on the surface of the catalyst. Adding water steam to the reaction can ease the problem of carbon deposition; however, deionized water consumption and corresponding mid-temperature thermal energy are consumed sharply and inevitably, and addition of water restricts the conversion of carbon dioxide. To address these irreconcilable problems, the study develops a novel solar-driven two-stage biogas reforming process to produce syngas with a higher carbon monoxide/hydrogen molar ratio, which is also properer for chemical synthesis compared with the conventional single biogas steam reforming process. The carbon dioxide conversion rate can be promoted from 27.32% to 63.72% in the new design at a reaction temperature of 750 °C, and the total heating value of produced syngas in the new design has slight advantages. It is worth noting that the new design still exhibits excellent water and energy saving ability. For the reaction temperature from 600 °C to 750 °C, the safe range for critical biogas split ratio is from 0.58 to 0.68, and the optimal water/heat saving ratio can reach 32–42%. This study offers an integration idea for the future studies concerning the performance improvement of biogas reforming.

Suggested Citation

  • Su, Bosheng & Lin, Feng & Ma, Jingyuan & Huang, Shenghua & Wang, Yilin & Zhang, Xiaodong & Han, Wei & Wang, Hongsheng, 2022. "System integration of multi-grade exploitation of biogas chemical energy driven by solar energy," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031066
    DOI: 10.1016/j.energy.2021.122857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.
    2. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    3. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    4. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    5. Aramouni, Nicolas Abdel Karim & Touma, Jad G. & Tarboush, Belal Abu & Zeaiter, Joseph & Ahmad, Mohammad N., 2018. "Catalyst design for dry reforming of methane: Analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2570-2585.
    6. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    7. Mehr, A.S. & Gandiglio, M. & MosayebNezhad, M. & Lanzini, A. & Mahmoudi, S.M.S. & Yari, M. & Santarelli, M., 2017. "Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis," Applied Energy, Elsevier, vol. 191(C), pages 620-638.
    8. García, R. & Gil, M.V. & Rubiera, F. & Chen, D. & Pevida, C., 2021. "Renewable hydrogen production from biogas by sorption enhanced steam reforming (SESR): A parametric study," Energy, Elsevier, vol. 218(C).
    9. Su, Bosheng & Han, Wei & He, Hongzhou & Jin, Hongguang & Chen, Zhijie & Zheng, Jieqing & Yang, Shaohui & Zhang, Xiaodong, 2020. "Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process," Applied Energy, Elsevier, vol. 279(C).
    10. Wang, Jiangjiang & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas," Energy, Elsevier, vol. 93(P1), pages 801-815.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    2. Wang, Pengya & Wang, Jianxiao & Jin, Ruiyang & Li, Gengyin & Zhou, Ming & Xia, Qing, 2022. "Integrating biogas in regional energy systems to achieve near-zero carbon emissions," Applied Energy, Elsevier, vol. 322(C).
    3. Zeng, Jia & Xuan, Yimin & Li, Qiang, 2023. "Direct solar-thermal scalable-decomposition of methanol flowing through a nanoparticle-packed bed reactor under outdoor environment," Energy, Elsevier, vol. 280(C).
    4. Huang, Zhi & Su, Bosheng & Wang, Yilin & Yuan, Shuo & Huang, Yupeng & Li, Liang & Cai, Jiahao & Chen, Zhiqiang, 2024. "A novel biogas-driven CCHP system based on chemical reinjection," Energy, Elsevier, vol. 297(C).
    5. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Bosheng & Han, Wei & He, Hongzhou & Jin, Hongguang & Chen, Zhijie & Zheng, Jieqing & Yang, Shaohui & Zhang, Xiaodong, 2020. "Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process," Applied Energy, Elsevier, vol. 279(C).
    2. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    3. Huang, Zhi & Su, Bosheng & Wang, Yilin & Yuan, Shuo & Huang, Yupeng & Li, Liang & Cai, Jiahao & Chen, Zhiqiang, 2024. "A novel biogas-driven CCHP system based on chemical reinjection," Energy, Elsevier, vol. 297(C).
    4. Su, Bosheng & Han, Wei & Qu, Wanjun & Liu, Changchun & Jin, Hongguang, 2018. "A new hybrid photovoltaic/thermal and liquid desiccant system for trigeneration application," Applied Energy, Elsevier, vol. 226(C), pages 808-818.
    5. Su, Bosheng & Huang, Yupeng & Wang, Yilin & Huang, Zhi & Yuan, Shuo & Huang, Qiteng & Xu, Zhilong & Lin, Feng, 2023. "Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode," Applied Energy, Elsevier, vol. 343(C).
    6. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    7. Hua, Zhihao & Li, Jiayong & Zhou, Bin & Or, Siu Wing & Chan, Ka Wing & Meng, Yunfan, 2022. "Game-theoretic multi-energy trading framework for strategic biogas-solar renewable energy provider with heterogeneous consumers," Energy, Elsevier, vol. 260(C).
    8. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Han, Zepeng & Han, Wei & Sui, Jun, 2024. "Exergo-environmental cost optimization and thermodynamic analysis for a solar-driven combined heating and power system," Energy, Elsevier, vol. 302(C).
    10. Wu, Haifeng & Liu, Qibin & Xie, Gengxin & Guo, Shaopeng & Zheng, Jie & Su, Bosheng, 2020. "Performance investigation of a novel hybrid combined cooling, heating and power system with solar thermochemistry in different climate zones," Energy, Elsevier, vol. 190(C).
    11. Han, Zepeng & Wang, Jiangjiang & Cui, Zhiheng & Lu, Chunyan & Qi, Xiaoling, 2021. "Multi-objective optimization and exergoeconomic analysis for a novel full-spectrum solar-assisted methanol combined cooling, heating, and power system," Energy, Elsevier, vol. 237(C).
    12. Chen, Yuzhu & Xu, Jinzhao & Zhao, Dandan & Wang, Jun & Lund, Peter D., 2021. "Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump," Energy, Elsevier, vol. 230(C).
    13. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    14. Yang, Kun & Wang, Jiangjiang & Jiang, Haowen, 2024. "A novel exergy-based cost and carbon footprint allocation method in the multi-energy complementary system," Renewable Energy, Elsevier, vol. 231(C).
    15. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    16. Vera Marcantonio & Lucrezia Scopel, 2024. "Thermodynamic Models of Solid Oxide Fuel Cells (SOFCs): A Review," Sustainability, MDPI, vol. 16(23), pages 1-29, December.
    17. Wang, Jiangjiang & Ma, Chaofan & Wu, Jing, 2019. "Thermodynamic analysis of a combined cooling, heating and power system based on solar thermal biomass gasification☆," Applied Energy, Elsevier, vol. 247(C), pages 102-115.
    18. Wang, Jiangjiang & Yang, Ying, 2017. "A hybrid operating strategy of combined cooling, heating and power system for multiple demands considering domestic hot water preferentially: A case study," Energy, Elsevier, vol. 122(C), pages 444-457.
    19. Fu, Chao & Li, Anxiang & Shen, Qingfei & Ding, Shuo & Duan, Zheng & Wang, Jiangjiang, 2024. "Exergy-water nexus of a multi-energy complementary trigeneration system with different fuel mixture ratios," Energy, Elsevier, vol. 304(C).
    20. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.