IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v23y1998i3p183-192.html
   My bibliography  Save this article

Apparent and effective thermal capacitance of buildings

Author

Listed:
  • Antonopoulos, K.A.
  • Koronaki, E.

Abstract

The apparent thermal capacitance of a building is obtained by adding the distributed specific heats of all building elements. It differs considerably from the effective thermal capacitance, which is calculated in the present study by forcing the solution of a lumped-system differential equation to follow the experimentally validated, finite-difference solution of a rigorous set of coupled differential equations describing the heat transport and energy balance in buildings. The effective thermal capacitance is calculated for various characteristic cases of Greek buildings and provides a simple procedure for approximating the transient thermal behaviour of buildings.

Suggested Citation

  • Antonopoulos, K.A. & Koronaki, E., 1998. "Apparent and effective thermal capacitance of buildings," Energy, Elsevier, vol. 23(3), pages 183-192.
  • Handle: RePEc:eee:energy:v:23:y:1998:i:3:p:183-192
    DOI: 10.1016/S0360-5442(97)00088-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544297000881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(97)00088-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
    2. Antonopoulos, K.A. & Gioti, F. & Tzivanidis, C., 2010. "A transient model for the energy analysis of indoor spaces," Applied Energy, Elsevier, vol. 87(10), pages 3084-3091, October.
    3. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    4. Ding, Yan & Lyu, Yacong & Lu, Shilei & Wang, Ran, 2022. "Load shifting potential assessment of building thermal storage performance for building design," Energy, Elsevier, vol. 243(C).
    5. Fan, Xinying & Li, Xiang, 2022. "Performance comparison analysis for different single-zone natural ventilation building indoor temperature prediction method combined thermal mass," Energy, Elsevier, vol. 255(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:23:y:1998:i:3:p:183-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.