IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds036054422102435x.html
   My bibliography  Save this article

Energy consumption of forklift versus standards, effects of their use and expectations

Author

Listed:
  • Zajac, Pawel
  • Rozic, Tomislav

Abstract

the paper concerns the search for a reasonable calculation method to determine the energy consumption of a forklift. The effects of alternative pathways for determining energy consumption are summarised, including: VDI 2198, ISO 50001, MTM - and proprietary PZM test cycle. These tools are used to determine the energy consumption of logistical transport and storage systems. A single forklift is rarely operated; they more often occur in the form of “fleets”. Therefore, assuming the effect of scale, the precise determination of energy consumption gives a chance to significantly reduce emissions and operating costs, by defining in the next step precise costs (e.g. logistic costs); another aspect is optimum fleet and people management, as well as battery charging/refuelling. In addition to the traditional “pathways” of determining energy consumption (mentioned above) - the paper discusses a new PZM cycle (Pawel Zajac Method). The energy consumption in the PZM work cycle was verified in logistics centres and compared with the simulation results. Additionally, the results of energy consumption from computer simulations made for “economic” speed are included.

Suggested Citation

  • Zajac, Pawel & Rozic, Tomislav, 2022. "Energy consumption of forklift versus standards, effects of their use and expectations," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s036054422102435x
    DOI: 10.1016/j.energy.2021.122187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102435X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, In & Lee, Kyoochun, 2015. "The Internet of Things (IoT): Applications, investments, and challenges for enterprises," Business Horizons, Elsevier, vol. 58(4), pages 431-440.
    2. Lee, Young Hae & Hwan Lee, Moon & Hur, Sun, 2005. "Optimal design of rack structure with modular cell in AS/RS," International Journal of Production Economics, Elsevier, vol. 98(2), pages 172-178, November.
    3. Wang, Lili & Zhao, Dingxuan & Wang, Yao & Wang, Lei & Li, Yilei & Du, Miaomiao & Chen, Hanzhe, 2017. "Energy management strategy development of a forklift with electric lifting device," Energy, Elsevier, vol. 128(C), pages 435-446.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateusz Zając, 2022. "The Analysis of Selected Factors Improving the Cargo Susceptibility to Modal Shift," Energies, MDPI, vol. 15(23), pages 1-16, November.
    2. Dong In Lee & Junhong Park & Myunghwan Shin & Jongtae Lee & Sangki Park, 2022. "Characteristics of Real-World Gaseous Emissions from Construction Machinery," Energies, MDPI, vol. 15(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Alnahhal & Bashir Salah & Mohammed Ruzayqat, 2022. "An Efficient Approach to Investigate the Tradeoff between Double Handling and Needed Capacity in Automated Distribution Centers," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    2. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    4. Natalia Kharadze & Paichadze Nugzar & Nino Paresashvili & Dea Pirtskhalaishvili, 2021. "General Trends of Business Career Management," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 8, January -.
    5. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    6. Bent Flyvbjerg & Alexander Budzier & Jong Seok Lee & Mark Keil & Daniel Lunn & Dirk W. Bester, 2022. "The Empirical Reality of IT Project Cost Overruns: Discovering A Power-Law Distribution," Papers 2210.01573, arXiv.org.
    7. Wei Zhang & Jixin Wang & Shaofeng Du & Hongfeng Ma & Wenjun Zhao & Haojie Li, 2019. "Energy Management Strategies for Hybrid Construction Machinery: Evolution, Classification, Comparison and Future Trends," Energies, MDPI, vol. 12(10), pages 1-26, May.
    8. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    9. Bettina Freitag & Lukas Häfner & Verena Pfeuffer & Jochen Übelhör, 2020. "Evaluating investments in flexible on-demand production capacity: a real options approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 133-161, April.
    10. Akhtar, Pervaiz & Khan, Zaheer & Tarba, Shlomo & Jayawickrama, Uchitha, 2018. "The Internet of Things, dynamic data and information processing capabilities, and operational agility," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 307-316.
    11. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    12. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    13. Osterrieder, Philipp & Budde, Lukas & Friedli, Thomas, 2020. "The smart factory as a key construct of industry 4.0: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 221(C).
    14. Deng, Ying & Cao, Zhitao & Yang, Na, 2024. "Understanding the nexus between fintech, natural resources, green investment, and environmental sustainability in China: A DYNARDL approach," Resources Policy, Elsevier, vol. 91(C).
    15. Elias G. Carayannis & David F. J. Campbell, 2021. "Democracy of Climate and Climate for Democracy: the Evolution of Quadruple and Quintuple Helix Innovation Systems," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(4), pages 2050-2082, December.
    16. Kumar, V. & Ramachandran, Divya & Kumar, Binay, 2021. "Influence of new-age technologies on marketing: A research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 864-877.
    17. Rasha Allam & Hesham Dinana, 2021. "The Future of TV and Online Video Platforms: A Study on Predictors of Use and Interaction with Content in the Egyptian Evolving Telecomm, Media & Entertainment Industries," SAGE Open, , vol. 11(3), pages 21582440211, August.
    18. Madhukar Patil & M. Suresh, 2019. "Modelling the Enablers of Workforce Agility in IoT Projects: A TISM Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(2), pages 157-175, June.
    19. Abdel Ghafar, Ahmed Ismail & Vazquez Castro, Ágeles & Essam Khedr, Mohamed, 2019. "Multidimensional Self-Organizing Chord-Based Networking for Internet of Things," 2nd Europe – Middle East – North African Regional ITS Conference, Aswan 2019: Leveraging Technologies For Growth 201736, International Telecommunications Society (ITS).
    20. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s036054422102435x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.