Integration of artificial neural network, multi-objective genetic algorithm and phenomenological combustion modelling for effective operation of biodiesel blends in an automotive engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121889
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
- Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
- Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
- Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
- Jaliliantabar, Farzad & Ghobadian, Barat & Najafi, Gholamhassan & Mamat, Rizalman & Carlucci, Antonio Paolo, 2019. "Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
- Motlagh, Tara Yazdani & Azadani, Leila N. & Yazdani, Kaveh, 2020. "Multi-objective optimization of diesel injection parameters in a natural gas/diesel reactivity controlled compression ignition engine," Applied Energy, Elsevier, vol. 279(C).
- Dey, Suman & Reang, Narath Moni & Majumder, Arindam & Deb, Madhujit & Das, Pankaj Kumar, 2020. "A hybrid ANN-Fuzzy approach for optimization of engine operating parameters of a CI engine fueled with diesel-palm biodiesel-ethanol blend," Energy, Elsevier, vol. 202(C).
- Mohamed Ismail, Harun & Ng, Hoon Kiat & Queck, Cheen Wei & Gan, Suyin, 2012. "Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends," Applied Energy, Elsevier, vol. 92(C), pages 769-777.
- Channapattana, S.V. & Pawar, Abhay A. & Kamble, Prashant G., 2017. "Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model," Applied Energy, Elsevier, vol. 187(C), pages 84-95.
- Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Sebayang, A.H. & Dharma, S. & Kusumo, F. & Siswantoro, J. & Milano, Jassinnee & Daud, Khairil & Mahlia, T.M.I. & Chen, Wei-Hsin & Sugiyanto, Bamban, 2018. "Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine," Energy, Elsevier, vol. 159(C), pages 1075-1087.
- Thangaraja, J. & Anand, K. & Mehta, Pramod S., 2016. "Biodiesel NOx penalty and control measures - a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 1-24.
- Shivakumar & Srinivasa Pai, P. & Shrinivasa Rao, B.R., 2011. "Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings," Applied Energy, Elsevier, vol. 88(7), pages 2344-2354, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jeyaseelan, Thangaraja & El Samad, Tala & Rajkumar, Sundararajan & Chatterjee, Abhay & Al-Zaili, Jafar, 2023. "A techno-economic assessment of waste oil biodiesel blends for automotive applications in urban areas: Case of India," Energy, Elsevier, vol. 271(C).
- Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
- Wang, Huaiyu & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan, 2022. "Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm," Energy, Elsevier, vol. 261(PB).
- Zandie, Mohammad & Ng, Hoon Kiat & Gan, Suyin & Muhamad Said, Mohd Farid & Cheng, Xinwei, 2023. "Multi-input multi-output machine learning predictive model for engine performance and stability, emissions, combustion and ignition characteristics of diesel-biodiesel-gasoline blends," Energy, Elsevier, vol. 262(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yusri, I.M. & Abdul Majeed, A.P.P. & Mamat, R. & Ghazali, M.F. & Awad, Omar I. & Azmi, W.H., 2018. "A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 665-686.
- Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
- Dey, Suman & Reang, Narath Moni & Majumder, Arindam & Deb, Madhujit & Das, Pankaj Kumar, 2020. "A hybrid ANN-Fuzzy approach for optimization of engine operating parameters of a CI engine fueled with diesel-palm biodiesel-ethanol blend," Energy, Elsevier, vol. 202(C).
- Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
- Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
- Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
- Song Hu & Stefano d’Ambrosio & Roberto Finesso & Andrea Manelli & Mario Rocco Marzano & Antonio Mittica & Loris Ventura & Hechun Wang & Yinyan Wang, 2019. "Comparison of Physics-Based, Semi-Empirical and Neural Network-Based Models for Model-Based Combustion Control in a 3.0 L Diesel Engine," Energies, MDPI, vol. 12(18), pages 1-41, September.
- Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.
- Sun, Ping & Zhang, Jufang & Dong, Wei & Li, Decheng & Yu, Xiumin, 2023. "Prediction of oxygen-enriched combustion and emission performance on a spark ignition engine using artificial neural networks," Applied Energy, Elsevier, vol. 348(C).
- Bahri, Bahram & Shahbakhti, Mahdi & Kannan, Kaushik & Aziz, Azhar Abdul, 2016. "Identification of ringing operation for low temperature combustion engines," Applied Energy, Elsevier, vol. 171(C), pages 142-152.
- Bhowmik, Subrata & Paul, Abhishek & Panua, Rajsekhar & Ghosh, Subrata Kumar & Debroy, Durbadal, 2018. "Performance-exhaust emission prediction of diesosenol fueled diesel engine: An ANN coupled MORSM based optimization," Energy, Elsevier, vol. 153(C), pages 212-222.
- Roy, Sumit & Banerjee, Rahul & Bose, Probir Kumar, 2014. "Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network," Applied Energy, Elsevier, vol. 119(C), pages 330-340.
- Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
- Haruki Tajima & Takuya Tomidokoro & Takeshi Yokomori, 2022. "Deep Learning for Knock Occurrence Prediction in SI Engines," Energies, MDPI, vol. 15(24), pages 1-14, December.
- Subrata Bhowmik & Rajsekhar Panua & Subrata K Ghosh & Abhishek Paul & Durbadal Debroy, 2018. "Prediction of performance and exhaust emissions of diesel engine fuelled with adulterated diesel: An artificial neural network assisted fuzzy-based topology optimization," Energy & Environment, , vol. 29(8), pages 1413-1437, December.
- Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
- Roy, Sumit & Ghosh, Ashmita & Das, Ajoy Kumar & Banerjee, Rahul, 2015. "Development and validation of a GEP model to predict the performance and exhaust emission parameters of a CRDI assisted single cylinder diesel engine coupled with EGR," Applied Energy, Elsevier, vol. 140(C), pages 52-64.
- Manieniyan, V. & Vinodhini, G. & Senthilkumar, R. & Sivaprakasam, S., 2016. "Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation," Energy, Elsevier, vol. 114(C), pages 603-612.
- Channapattana, S.V. & Pawar, Abhay A. & Kamble, Prashant G., 2017. "Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model," Applied Energy, Elsevier, vol. 187(C), pages 84-95.
- Bahri, Bahram & Aziz, Azhar Abdul & Shahbakhti, Mahdi & Muhamad Said, Mohd Farid, 2013. "Understanding and detecting misfire in an HCCI engine fuelled with ethanol," Applied Energy, Elsevier, vol. 108(C), pages 24-33.
More about this item
Keywords
Multi-objective genetic algorithm; Artificial neural networks; Biodiesel blends; Multi-zone model; Optimization; Emissions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s036054422102137x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.