Novel method for determining the oil moveable threshold and an innovative model for evaluating the oil content in shales
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121848
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Unconventional gas – A review of regional and global resource estimates," Energy, Elsevier, vol. 55(C), pages 571-584.
- J. David Hughes, 2013. "A reality check on the shale revolution," Nature, Nature, vol. 494(7437), pages 307-308, February.
- Wang, Qiang & Song, Xiaoxing & Li, Rongrong, 2018. "A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production," Energy, Elsevier, vol. 165(PB), pages 1320-1331.
- Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Wang, Yaping & Yang, Xuan & Luo, Bing & Zhang, Wang & Zhang, Xinwen & Li, Changrong & Wang, Qifeng & Li, Caijun, 2021. "Quantitative evaluation of transport efficiency of fault-reservoir composite migration pathway systems in carbonate petroliferous basins," Energy, Elsevier, vol. 222(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sheridan Few & Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Stephane Mangeon & Dan Bernie & Jason Lowe, 2017. "The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties," Energies, MDPI, vol. 10(2), pages 1-22, January.
- Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
- Jie Zhang & Xizhe Li & Weijun Shen & Shusheng Gao & Huaxun Liu & Liyou Ye & Feifei Fang, 2020. "Study of the Effect of Movable Water Saturation on Gas Production in Tight Sandstone Gas Reservoirs," Energies, MDPI, vol. 13(18), pages 1-14, September.
- Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
- Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
- Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
- Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
- Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
- Zhineng Hu & Jing Ma & Liangwei Yang & Liming Yao & Meng Pang, 2019. "Monthly electricity demand forecasting using empirical mode decomposition-based state space model," Energy & Environment, , vol. 30(7), pages 1236-1254, November.
- Gülen, Gürcan & Browning, John & Ikonnikova, Svetlana & Tinker, Scott W., 2013. "Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas," Energy, Elsevier, vol. 60(C), pages 302-315.
- Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
- Zou, Youqin & Yang, Changbing & Wu, Daishe & Yan, Chun & Zeng, Masun & Lan, Yingying & Dai, Zhenxue, 2016. "Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China," Applied Energy, Elsevier, vol. 180(C), pages 185-195.
- Wang, Lian & Yao, Yuedong & Wang, Kongjie & Adenutsi, Caspar Daniel & Zhao, Guoxiang & Lai, Fengpeng, 2022. "Hybrid application of unsupervised and supervised learning in forecasting absolute open flow potential for shale gas reservoirs," Energy, Elsevier, vol. 243(C).
- Oke, Doris & Mukherjee, Rajib & Sengupta, Debalina & Majozi, Thokozani & El-Halwagi, Mahmoud, 2020. "On the optimization of water-energy nexus in shale gas network under price uncertainties," Energy, Elsevier, vol. 203(C).
- Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight," Energy Policy, Elsevier, vol. 62(C), pages 1212-1215.
- Wen, Kai & Jiao, Jianfeng & Zhao, Kang & Yin, Xiong & Liu, Yuan & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Rapid transient operation control method of natural gas pipeline networks based on user demand prediction," Energy, Elsevier, vol. 264(C).
- Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
- Lili Wang & Lina Zhan & Rongrong Li, 2019. "Prediction of the Energy Demand Trend in Middle Africa—A Comparison of MGM, MECM, ARIMA and BP Models," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
- Temitope Love Baiyegunhi & Christopher Baiyegunhi & Benedict Kinshasa Pharoe, 2022. "Global Research Trends on Shale Gas from 2010–2020 Using a Bibliometric Approach," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
- Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
More about this item
Keywords
Shale oil; Lacustrine shale; Oil movable threshold; Oil content evaluation model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s036054422102096x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.