IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221014717.html
   My bibliography  Save this article

Tubular ring thermoelectric module for exhaust pipes: From Skutterudite nanopowders to the final device

Author

Listed:
  • Caballero-Calero, Olga
  • Rull-Bravo, Marta
  • Platzek, Dieter
  • Cárdenas, M. Dolores
  • Fernández, Ricardo
  • Moure, Alberto
  • Fernández, José Francisco
  • Martín-González, Marisol

Abstract

There is an important number of thermoelectric applications in the range of medium temperatures (between 200 and 600 °C), such as heat recovery in automotive applications, where these temperatures are easily reached in the exhaust or the motor. Among the various materials which exhibit good thermoelectric properties in this range, Skutterudites (with the general formula CoSb3) stand out as some of the most used. In recent years, different improvements have been done to decrease their thermal conductivity, from using rattler atoms inside their structure to nanostructuring by sintering nanoparticles and increasing the number of grain boundaries. In this work, we present the subsequent development of the nanopowder ball-milling fabrication method, to obtain a scalable production of n-type and p-type nanostructured Skutterudites. The sintering of these powders into nano-composites was done by different pressing and annealing treatments, which not only could substitute other sintering processes such as Spark Plasma Sintering, giving competitive values of the thermoelectric properties of the final nanostructured material, but can also be used to directly obtain different geometries to be used in certain implementations. This procedure has been tested by fabricating thermoelectric legs of the thermoelectric nanostructured material in the shape of rings, in contrast with the more generally available thermoelectric modules, which have a planar architecture. The ring-shaped architecture was obtained by pressing the nano-powders between copper rings, and from them, cylindrical thermoelectric generators were implemented, which present several of advantages for their use in automotive waste heat recovery from the exhaust, for instance. The optimal parameters, as far as geometry and the materials used in the final device, can be extracted from simulations based on the actual measurements obtained in the fabricated thermoelectric rings. Taking all these into account, in this work we present a route to fabricate low-cost nano-structured Skutterudite in an easily scalable way, suitable for the implementation of different architectures of thermoelectric generators for mid-range temperature applications.

Suggested Citation

  • Caballero-Calero, Olga & Rull-Bravo, Marta & Platzek, Dieter & Cárdenas, M. Dolores & Fernández, Ricardo & Moure, Alberto & Fernández, José Francisco & Martín-González, Marisol, 2021. "Tubular ring thermoelectric module for exhaust pipes: From Skutterudite nanopowders to the final device," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014717
    DOI: 10.1016/j.energy.2021.121223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abad, B. & Borca-Tasciuc, D.-A. & Martin-Gonzalez, M.S., 2017. "Non-contact methods for thermal properties measurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1348-1370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Perez, Oscar, 2018. "Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 566-579.
    2. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.