IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v22y1997i4p437-447.html
   My bibliography  Save this article

Silica gel water advanced adsorption refrigeration cycle

Author

Listed:
  • Saha, Bidyut B.
  • Akisawa, Atsushi
  • Kashiwagi, Takao

Abstract

We present results of an analytic investigation on the influence of the thermal conductance of sorption elements (adsorber/desorber, evaporator and condenser) on the performance of a silica-gel-water advanced adsorption chiller, with consideration of the thermal capacitance ratio of the adsorbent and metal of the adsorber/desorber heat exchanger. The analysis was performed by using a cycle-simulation model developed by us and a coworker. The chiller is driven by exploiting waste heat at a temperature 50°C with a cooling source at 30°C for air-conditioning and refrigeration purposes. The results show that the cycle performance is strongly affected by the thermal capacitance and adsorber/desorber thermal conductance due to severe sensible heating/cooling requirements resulting from batched cycle operation. The model is somewhat sensitive to the thermal conductance of the evaporator. The thermal conductance of the condenser is the least sensitive parameter, as the adsorption behavior of the adsorbent/adsorbate pair at a fixed temperature is defined for desorption and condensation.

Suggested Citation

  • Saha, Bidyut B. & Akisawa, Atsushi & Kashiwagi, Takao, 1997. "Silica gel water advanced adsorption refrigeration cycle," Energy, Elsevier, vol. 22(4), pages 437-447.
  • Handle: RePEc:eee:energy:v:22:y:1997:i:4:p:437-447
    DOI: 10.1016/S0360-5442(96)00102-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544296001028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(96)00102-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    2. Khan, M.Z.I. & Alam, K.C.A. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2008. "Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme," Renewable Energy, Elsevier, vol. 33(1), pages 88-98.
    3. Yeo, T.H.C. & Tan, I.A.W. & Abdullah, M.O., 2012. "Development of adsorption air-conditioning technology using modified activated carbon – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3355-3363.
    4. Marlinda & Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2010. "Performance Analysis of a Double-effect Adsorption Refrigeration Cycle with a Silica Gel/Water Working Pair," Energies, MDPI, vol. 3(11), pages 1-17, October.
    5. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    6. Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
    7. Khan, M.Z.I. & Saha, B.B. & Alam, K.C.A. & Akisawa, A. & Kashiwagi, T., 2007. "Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery," Renewable Energy, Elsevier, vol. 32(3), pages 365-381.
    8. Ji, Xu & Li, Ming & Fan, Jieqing & Zhang, Peng & Luo, Bin & Wang, Liuling, 2014. "Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system," Applied Energy, Elsevier, vol. 113(C), pages 1293-1300.
    9. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
    10. Shimazaki, Yoichi, 2003. "Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table," Energy Policy, Elsevier, vol. 31(15), pages 1685-1697, December.
    11. Korhammer, Kathrin & Neumann, Karsten & Opel, Oliver & Ruck, Wolfgang K.L., 2018. "Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC," Applied Energy, Elsevier, vol. 230(C), pages 1255-1278.
    12. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    13. Asfahan, Hafiz M. & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed A. & Shahzad, Muhammad W. & Worek, William, 2022. "Recent development in adsorption desalination: A state of the art review," Applied Energy, Elsevier, vol. 328(C).
    14. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:22:y:1997:i:4:p:437-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.