IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006642.html
   My bibliography  Save this article

Assessing the potential of combined production and energy management in Industrial Energy Hubs – Analysis of a chipboard production plant

Author

Listed:
  • Halmschlager, Verena
  • Hofmann, René

Abstract

To minimize energy consumption in today’s industry, holistic energy efficiency solutions are required. The Energy Hub is a promising concept for optimal energy management of industrial systems with multiple energy carriers like electricity, heat, or gas. However, most of the research conducted in this field focuses on optimal energy management and does not consider the scheduling of product in manufacturing processes. Though, including production scheduling in the energy optimization of manufacturing processes can considerably increase energy efficiency, especially if batch processes are involved. This work identifies the potential of combined energy and production scheduling in Industrial Energy Hubs, using a chipboard production process as a use case. The chipboard production plant includes a combined heat and power unit, units for production, and has two district heating demands as external requirements. A generic modeling and optimization framework, based on mixed-integer linear programming, is used to model and optimize different scenarios. The results show that the scheduling of product has a significant impact on the energy management of the chipboard production plant: The required energy for the production units can be reduced by approximately 30 %. Nevertheless, this potential can only be exploited if process design is adapted and excess heat is utilized appropriately.

Suggested Citation

  • Halmschlager, Verena & Hofmann, René, 2021. "Assessing the potential of combined production and energy management in Industrial Energy Hubs – Analysis of a chipboard production plant," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006642
    DOI: 10.1016/j.energy.2021.120415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    2. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    3. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    4. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Hosseinzadeh, Mehdi & Yousefi, Hossein & Khorasani, Sasan Torabzadeh, 2018. "Optimal management of energy hubs and smart energy hubs – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 33-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongcheng & Yang, Dan & Cao, Huajun & Ge, Weiwei & Chen, Erheng & Wen, Xuanhao & Li, Chongbo, 2022. "Data-driven hybrid petri-net based energy consumption behaviour modelling for digital twin of energy-efficient manufacturing system," Energy, Elsevier, vol. 239(PC).
    2. Jonas Sievers & Thomas Blank, 2023. "A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems," Energies, MDPI, vol. 16(4), pages 1-21, February.
    3. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    4. Nasiri, Nima & Zeynali, Saeed & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2021. "A hybrid robust-stochastic approach for strategic scheduling of a multi-energy system as a price-maker player in day-ahead wholesale market," Energy, Elsevier, vol. 235(C).
    5. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    6. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Cao, Junyi & Liao, Wei-Hsin, 2022. "Design of a high-performance piecewise bi-stable piezoelectric energy harvester," Energy, Elsevier, vol. 241(C).
    7. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    8. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Mostafavi Sani, Mostafa & Mostafavi Sani, Hossein & Fowler, Michael & Elkamel, Ali & Noorpoor, Alireza & Ghasemi, Amir, 2022. "Optimal energy hub development to supply heating, cooling, electricity and freshwater for a coastal urban area taking into account economic and environmental factors," Energy, Elsevier, vol. 238(PB).
    3. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).
    4. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    5. Li, Zheng & Zhang, Hao & Xu, Haoran & Xuan, Jin, 2021. "Advancing the multiscale understanding on solid oxide electrolysis cells via modelling approaches: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Antonio Pepiciello & Alfredo Vaccaro & Mario Mañana, 2019. "Robust Optimization of Energy Hubs Operation Based on Extended Affine Arithmetic," Energies, MDPI, vol. 12(12), pages 1-15, June.
    7. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    8. Zhang, Hongyu & Tomasgard, Asgeir & Knudsen, Brage Rugstad & Svendsen, Harald G. & Bakker, Steffen J. & Grossmann, Ignacio E., 2022. "Modelling and analysis of offshore energy hubs," Energy, Elsevier, vol. 261(PA).
    9. Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
    10. Qin, Chun & Wang, Linqing & Han, Zhongyang & Zhao, Jun & Liu, Quanli, 2021. "Weighted directed graph based matrix modeling of integrated energy systems," Energy, Elsevier, vol. 214(C).
    11. Li, Chengzhou & Wang, Ningling & Wang, Zhuo & Dou, Xiaoxiao & Zhang, Yumeng & Yang, Zhiping & Maréchal, François & Wang, Ligang & Yang, Yongping, 2022. "Energy hub-based optimal planning framework for user-level integrated energy systems: Considering synergistic effects under multiple uncertainties," Applied Energy, Elsevier, vol. 307(C).
    12. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
    13. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    14. Ma, Tengfei & Pei, Wei & Xiao, Hao & Kong, Li & Mu, Yunfei & Pu, Tianjiao, 2020. "The energy management strategies based on dynamic energy pricing for community integrated energy system considering the interactions between suppliers and users," Energy, Elsevier, vol. 211(C).
    15. Chen, Honglin & Liu, Mingbo & Liu, Yingqi & Lin, Shunjiang & Yang, Zhibin, 2020. "Partial surrogate cuts method for network-constrained optimal scheduling of multi-carrier energy systems with demand response," Energy, Elsevier, vol. 196(C).
    16. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Chen, Zexing & Zhang, Yongjun & Tang, Wenhu & Lin, Xiaoming & Li, Qifeng, 2019. "Generic modelling and optimal day-ahead dispatch of micro-energy system considering the price-based integrated demand response," Energy, Elsevier, vol. 176(C), pages 171-183.
    18. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    19. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    20. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.