IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544221000293.html
   My bibliography  Save this article

Modeling of carbon dioxide dissolution in an injection well for geologic sequestration in aquifers

Author

Listed:
  • Cao, Federico
  • Eskin, Dmitry
  • Leonenko, Yuri

Abstract

Carbon dioxide (CO2) sequestration is considered to be one of the most effective technologies of mitigating greenhouse gas emissions. In this technology, single phase supercritical CO2 is injected into an underground geological formation such as a deep saline aquifer. Existing sequestration projects demonstrate that successful implementations are possible; however, significant uncertainties associated with the risks of leakage remain an obstacle for broader use of this technology. The security of underground disposal could be considerably increased by dissolving the CO2 in a brine produced from the aquifer, then re-injecting the mixture underground. The dissolution process occurs before the mixture reaches the aquifer; this significantly reduces or completely eliminates the risks of CO2 leakage. This technique can drastically extend the amount of worldwide aquifers available for carbon sequestration. As was previously shown, complete dissolution could be achieved in a surface pipeline operating under the pressure of a target aquifer, where CO2 is injected. In this paper, a comprehensive model of CO2 droplet dissolution in a vertical injection well is presented. The model accounts for droplet breakup, coalescence, and dissolution processes as well as temperature and pressure variations over well depth. Feasibility and results are discussed and compared with surface dissolution options.

Suggested Citation

  • Cao, Federico & Eskin, Dmitry & Leonenko, Yuri, 2021. "Modeling of carbon dioxide dissolution in an injection well for geologic sequestration in aquifers," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000293
    DOI: 10.1016/j.energy.2021.119780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221000293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shafaei, Mohammad Javad & Abedi, Jalal & Hassanzadeh, Hassan & Chen, Zhangxin, 2012. "Reverse gas-lift technology for CO2 storage into deep saline aquifers," Energy, Elsevier, vol. 45(1), pages 840-849.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niknam, Pouriya H. & Talluri, Lorenzo & Fiaschi, Daniele & Manfrida, Giampaolo, 2021. "Sensitivity analysis and dynamic modelling of the reinjection process in a binary cycle geothermal power plant of Larderello area," Energy, Elsevier, vol. 214(C).
    2. Pouriya H. Niknam & Lorenzo Talluri & Daniele Fiaschi & Giampaolo Manfrida, 2020. "Improved Solubility Model for Pure Gas and Binary Mixture of CO 2 -H 2 S in Water: A Geothermal Case Study with Total Reinjection," Energies, MDPI, vol. 13(11), pages 1-14, June.
    3. Jinlong, Li & Wenjie, Xu & Jianjing, Zheng & Wei, Liu & Xilin, Shi & Chunhe, Yang, 2020. "Modeling the mining of energy storage salt caverns using a structural dynamic mesh," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.