IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220323707.html
   My bibliography  Save this article

Nitric oxide emission reduction and thermal characteristics of fuel-pulsed oscillating combustion in an industrial burner system

Author

Listed:
  • Jang, Byunghwa
  • Oh, Changyong
  • Ahn, Sungsu
  • Kim, Yeongkyun
  • Park, Jonghyun
  • Choi, Minsung
  • Sung, Yonmo

Abstract

An experimental study was conducted on the effects of non-oscillating and oscillating combustions on nitric oxide (NO)-emission reduction and heat-transfer enhancement in an industrial low-NOx burner for reheating furnaces. Natural gas was periodically supplied by an oscillating control valve equipped with a rotary-type disk generating an oscillating fuel flow inside the furnace. The furnace temperatures and gas-species concentrations were measured for non-oscillating and oscillating combustions with the oscillating-frequency and duty ratio in the ranges of 1–5 Hz and 10–40%, respectively. The flame sizes in oscillating combustion increased (decreased) under a fuel-rich (fuel-lean) combustion condition, corresponding to the oscillating fuel-flow rates. The NO-reduction efficiency of the oscillating combustion increased as the oscillating frequency (Hz) decreased and as the duty ratio (%) increased in contrast to the non-oscillating combustion. The maximum NO reduction was ∼32% under the 1 Hz/40% oscillating combustion. Although the peak temperature was lower in the oscillating combustion than in the non-oscillating combustion, the overall temperature distribution in the oscillating condition was higher than that in the non-oscillating combustion. Thus, the oscillating combustion improved the furnace-heating performance by ∼9.8%. Consequently, it effectively facilitated NO-emission reduction and heat-transfer enhancement simultaneously.

Suggested Citation

  • Jang, Byunghwa & Oh, Changyong & Ahn, Sungsu & Kim, Yeongkyun & Park, Jonghyun & Choi, Minsung & Sung, Yonmo, 2021. "Nitric oxide emission reduction and thermal characteristics of fuel-pulsed oscillating combustion in an industrial burner system," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323707
    DOI: 10.1016/j.energy.2020.119263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220323707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Biao & Tang, Kai & Chen, Demin & Han, Yunlong & Wang, Suojun & He, Xin & Chen, Guang, 2019. "A novel approach for lean energy operation based on energy apportionment model in reheating furnace," Energy, Elsevier, vol. 182(C), pages 1239-1249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonmo Sung & Seungtae Kim & Byunghwa Jang & Changyong Oh & Taeyun Jee & Soonil Park & Kwansic Park & Siyoul Chang, 2021. "Nitric Oxide Emission Reduction in Reheating Furnaces through Burner and Furnace Air-Staged Combustions," Energies, MDPI, vol. 14(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonmo Sung & Seungtae Kim & Byunghwa Jang & Changyong Oh & Taeyun Jee & Soonil Park & Kwansic Park & Siyoul Chang, 2021. "Nitric Oxide Emission Reduction in Reheating Furnaces through Burner and Furnace Air-Staged Combustions," Energies, MDPI, vol. 14(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.