IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipas0360544220322611.html
   My bibliography  Save this article

Using heat flux sensors for a contribution to experimental analysis of heat transfers on a triple-glazed supply-air window

Author

Listed:
  • Gloriant, François
  • Joulin, Annabelle
  • Tittelein, Pierre
  • Lassue, Stéphane

Abstract

An experimental set-up of triple-glazed supply-air window is developed in this research in order to characterize the window’s thermal performance without solar radiation. By simultaneously measuring the local temperatures and heat fluxes with thermocouples and heat fluxmeters, the heat fluxes determination requires no longer using the correlations of heat transfer coefficients around the window, which are often the source of high uncertainties. Results show that the use of fluxmeters brought a more accurate measure of heat transfers around and in the window. Thereafter, the heat transfer coefficients can be correctly estimated by empirical evidence. Uncertainty analysis is then presented to highlight the reliability of the experimental method. Afterwards, the obtained experimental data are compared with those of numerical model developed by using Fluent® software. A thorough comparison analysis is provided to explain which parameters play a role in deviating the results between the two methods, leading to conclude the validity of numerical model assumptions with respect to the real conditions of experimental set-up.

Suggested Citation

  • Gloriant, François & Joulin, Annabelle & Tittelein, Pierre & Lassue, Stéphane, 2021. "Using heat flux sensors for a contribution to experimental analysis of heat transfers on a triple-glazed supply-air window," Energy, Elsevier, vol. 215(PA).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322611
    DOI: 10.1016/j.energy.2020.119154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos, Jorge S. & Corvacho, Helena, 2014. "Evaluation of the thermal performance indices of a ventilated double window through experimental and analytical procedures: Uw-values," Renewable Energy, Elsevier, vol. 63(C), pages 747-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    2. Salem Zeiny & Yassine Cherif & Stephane Lassue, 2023. "Analysis of the Thermo-Aeraulic Behavior of a Heated Supply Air Window in Forced Convection: Numerical and Experimental Approaches," Energies, MDPI, vol. 16(7), pages 1-27, April.
    3. Dwinanto Sukamto & Monica Siroux & Francois Gloriant, 2021. "Hot Box Investigations of a Ventilated Bioclimatic Wall for NZEB Building Façade," Energies, MDPI, vol. 14(5), pages 1-16, March.
    4. Darya Andreeva & Darya Nemova & Evgeny Kotov, 2022. "Multi-Skin Adaptive Ventilated Facade: A Review," Energies, MDPI, vol. 15(9), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    2. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    3. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    4. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    5. Chang Heon Cheong & Taeyeon Kim & Seung-Bok Leigh, 2015. "Lifecycle CO 2 Reduction by Implementing Double Window Casement Systems in Residential Units in Korea," Energies, MDPI, vol. 8(2), pages 1-17, February.
    6. Sadooghi, Parham & Kherani, Nazir P., 2019. "Influence of slat angle and low-emissive partitioning radiant energy veils on the thermal performance of multilayered windows for dynamic facades," Renewable Energy, Elsevier, vol. 143(C), pages 142-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.