IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220306459.html
   My bibliography  Save this article

Performance analysis of the water-injected centrifugal vapor compressor

Author

Listed:
  • Yin, Haoyu
  • Wu, Hong
  • Li, Yulong
  • Quan, Jin

Abstract

In industrial production, mechanical vapor recompression (MVR) technology is becoming more widely used. The performance of MVR will be further enhanced, if it can be combined with the wet compression technology. However, the water-injected vapor compression is different from the wet air compression. In addition, the working environment of the centrifugal compressor is more complicated, which has tremendous potential in the MVR system. In this paper, the performance of the water-injected centrifugal vapor compressor was analyzed by adopting numerical simulation and experimental methods. Since the injected water is atomized before entering the compressor, this study mainly analyses the impact of atomization uniformity on the water-injected compression and proposes a method to improve atomization uniformity only by changing the parameter of the system. The results showed that excessive diameter of droplets after atomization affects the stable operation of the compressor and enhancing the atomization uniformity can greatly reduce the outlet temperature of the compressor. Moreover, increasing the water-injection mass flow rate not only reduce the outlet temperature but also improve atomization uniformity and compression performance, but the excessive water-injection mass flow rate may cause the compressor to surge.

Suggested Citation

  • Yin, Haoyu & Wu, Hong & Li, Yulong & Quan, Jin, 2020. "Performance analysis of the water-injected centrifugal vapor compressor," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306459
    DOI: 10.1016/j.energy.2020.117538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
    2. Bracco, Stefano & Damiani, Lorenzo, 2012. "A non-conventional interpretation of thermal regeneration in steam cycles," Applied Energy, Elsevier, vol. 97(C), pages 548-557.
    3. Hu, Bin & Wu, Di & Wang, R.Z., 2018. "Water vapor compression and its various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 92-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yafen & Geng, Yanting & Yuan, Hao & Zhao, Zhaorui, 2022. "Investigation on water injection characteristics and its influence on the performance of twin-screw steam compressor," Energy, Elsevier, vol. 259(C).
    2. Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan Zhang & Xiwei Ke & Weiliang Wang & Xueyu Tang & Junfu Lyu & Qinghong Tang, 2023. "Study on the Selection of Single-Screw Steam Compressors in Industrial Steam Supply," Energies, MDPI, vol. 16(10), pages 1-15, May.
    2. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. A. A. Avramenko & I. V. Shevchuk & Yu. Yu. Kovetskaya & N. P. Dmitrenko, 2021. "An Integral Method for Natural Convection of Van Der Waals Gases over a Vertical Plate," Energies, MDPI, vol. 14(15), pages 1-12, July.
    4. Jiang, L. & Wang, R.Q. & Tao, X. & Roskilly, A.P., 2020. "A hybrid resorption-compression heat transformer for energy storage and upgrade with a large temperature lift," Applied Energy, Elsevier, vol. 280(C).
    5. Zhang, Huafu & Tong, Lige & Zhang, Zhentao & Song, Yanchang & Yang, Junling & Yue, Yunkai & Wu, Zhenqun & Wang, Youdong & Yu, Ze & Zhang, Junhao, 2023. "A integrated mechanical vapor compression enrichment system of radioactive wastewater: Experimental study, model optimization and performance prediction," Energy, Elsevier, vol. 282(C).
    6. Ding, Zhixiong & Wu, Wei, 2022. "A novel double-effect compression-assisted absorption thermal battery with high storage performance for thermal energy storage," Renewable Energy, Elsevier, vol. 191(C), pages 902-918.
    7. Yan, Hongzhi & Hu, Bin & Wang, Ruzhu, 2021. "Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Wu, Di & Jiang, Jiatong & Hu, Bin & Wang, R.Z., 2020. "Experimental investigation on the performance of a very high temperature heat pump with water refrigerant," Energy, Elsevier, vol. 190(C).
    10. Ding, Zhixiong & Wu, Wei & Huang, Si-Min & Huang, Hongyu & Bai, Yu & He, Zhaohong, 2023. "A novel compression-assisted energy storage heat transformer for low-grade renewable energy utilization," Energy, Elsevier, vol. 263(PA).
    11. Tian, Yafen & Geng, Yanting & Yuan, Hao & Zhao, Zhaorui, 2022. "Investigation on water injection characteristics and its influence on the performance of twin-screw steam compressor," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.