IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v19y1994i8p837-843.html
   My bibliography  Save this article

Finite-time view of the stirling engine

Author

Listed:
  • Ladas, H.G.
  • Ibrahim, O.M.

Abstract

We present a finite-time thermodynamic analysis of the Stirling engine cycle based on mass and energy balances with associated heat-transfer-rate equations. These governing equations are formulated as normalized ordinary differential equations which are solved numerically. The effects of heat-transfer contact time and regeneration on power output and efficiency are studied. The results show that there exists an optimum power output for a given engine design, based on engine speed and heat-transfer contact time.

Suggested Citation

  • Ladas, H.G. & Ibrahim, O.M., 1994. "Finite-time view of the stirling engine," Energy, Elsevier, vol. 19(8), pages 837-843.
  • Handle: RePEc:eee:energy:v:19:y:1994:i:8:p:837-843
    DOI: 10.1016/0360-5442(94)90036-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544294900361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(94)90036-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Campos, M.C. & Vargas, J.V.C. & Ordonez, J.C., 2012. "Thermodynamic optimization of a Stirling engine," Energy, Elsevier, vol. 44(1), pages 902-910.
    2. Kaushik, S.C & Kumar, S, 2000. "Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses," Energy, Elsevier, vol. 25(10), pages 989-1003.
    3. Xu, Haoran & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2022. "Multi-objective optimization of Stirling heat engine with various heat and mechanical losses," Energy, Elsevier, vol. 256(C).
    4. Buliński, Zbigniew & Szczygieł, Ireneusz & Krysiński, Tomasz & Stanek, Wojciech & Czarnowska, Lucyna & Gładysz, Paweł & Kabaj, Adam, 2017. "Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy," Energy, Elsevier, vol. 141(C), pages 2559-2571.
    5. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    6. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:19:y:1994:i:8:p:837-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.