IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v19y1994i1p125-133.html
   My bibliography  Save this article

Power optimization of an endoreversible stirling cycle with regeneration

Author

Listed:
  • Blank, David A.
  • Davis, Gregory W.
  • Wu, Chih

Abstract

An optimal power analysis is conducted on an endoreversible Stirling cycle with perfect regeneration. The endoreversible cycle is one in which the external heat transfer processes are the only irreversible processes of the cycle. Maximum power and efficiency at maximum power are obtained for the cycle based upon higher and lower temperature bounds. These results provide additional criteria for use in the study and performance evaluation of Stirling engines.

Suggested Citation

  • Blank, David A. & Davis, Gregory W. & Wu, Chih, 1994. "Power optimization of an endoreversible stirling cycle with regeneration," Energy, Elsevier, vol. 19(1), pages 125-133.
  • Handle: RePEc:eee:energy:v:19:y:1994:i:1:p:125-133
    DOI: 10.1016/0360-5442(94)90111-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544294901112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(94)90111-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaliq, Abdul & Kumar, Rajesh, 2005. "Finite-time heat-transfer analysis and ecological optimization of an endoreversible and regenerative gas-turbine power-cycle," Applied Energy, Elsevier, vol. 81(1), pages 73-84, May.
    2. Kaushik, S.C & Kumar, S, 2000. "Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses," Energy, Elsevier, vol. 25(10), pages 989-1003.
    3. Xu, Haoran & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2022. "Multi-objective optimization of Stirling heat engine with various heat and mechanical losses," Energy, Elsevier, vol. 256(C).
    4. Khaliq, Abdul, 2004. "Finite-time heat-transfer analysis and generalized power-optimization of an endoreversible Rankine heat-engine," Applied Energy, Elsevier, vol. 79(1), pages 27-40, September.
    5. Erbay, L. Berrin & Yavuz, Hasbi, 1999. "Analysis of an irreversible Ericsson engine with a realistic regenerator," Applied Energy, Elsevier, vol. 62(3), pages 155-167, March.
    6. Khu, Kerwin & Jiang, Liudi & Markvart, Tom, 2011. "Effect of finite heat input on the power performance of micro heat engines," Energy, Elsevier, vol. 36(5), pages 2686-2692.
    7. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    8. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Li, Yangyang, 2021. "An alkaline fuel cell/direct contact membrane distillation hybrid system for cogenerating electricity and freshwater," Energy, Elsevier, vol. 225(C).
    9. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.
    10. Patel, Vivek & Savsani, Vimal, 2016. "Multi-objective optimization of a Stirling heat engine using TS-TLBO (tutorial training and self learning inspired teaching-learning based optimization) algorithm," Energy, Elsevier, vol. 95(C), pages 528-541.
    11. Ahmadi, Mohammad H. & Hosseinzade, Hadi & Sayyaadi, Hoseyn & Mohammadi, Amir H. & Kimiaghalam, Farshad, 2013. "Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss," Renewable Energy, Elsevier, vol. 60(C), pages 313-322.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:19:y:1994:i:1:p:125-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.