IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219322820.html
   My bibliography  Save this article

Investigation of water co-adsorption on the energy balance of solid sorbent based direct air capture processes

Author

Listed:
  • Drechsler, Carsten
  • Agar, David W.

Abstract

The energy penalty induced by the desorption of water can significantly increase the carbon dioxide specific energy demand of direct air capture (DAC) processes with solid sorbents. An analysis of the water to carbon dioxide desorption ratio on an isotherm and unit operation level shows that a well-designed desorption step of the DAC unit may significantly reduce the co-desorption of water, even if still high H2O:CO2 ratios are to be expected on a unit operation level. Aiming for an even lower energy penalty to allow for the design of an autothermal operated DAC - power-to-gas (PtG) process, the possibility of compensating a part of the water's heat of desorption by recovering the energy stored in the water vapor desorbed through vapor recompression is investigated.

Suggested Citation

  • Drechsler, Carsten & Agar, David W., 2020. "Investigation of water co-adsorption on the energy balance of solid sorbent based direct air capture processes," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219322820
    DOI: 10.1016/j.energy.2019.116587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219322820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lackner, Klaus S., 2013. "The thermodynamics of direct air capture of carbon dioxide," Energy, Elsevier, vol. 50(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    2. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    3. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    4. Lowy, Daniel A. & Melendez, Jesus R. & Mátyás, Bence, 2024. "Electroreduction of carbon dioxide to liquid fuels: A low-cost, sustainable technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    5. Sina Hoseinpoori & David Pallarès & Filip Johnsson & Henrik Thunman, 2023. "A comparative exergy-based assessment of direct air capture technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-20, October.
    6. Cuesta, Antonio R. & Song, Chunshan, 2020. "pH swing adsorption process for ambient carbon dioxide capture using activated carbon black adsorbents and immobilized carbonic anhydrase biocatalysts," Applied Energy, Elsevier, vol. 280(C).
    7. Prussi, M. & Weindorf, W. & Buffi, M. & Sánchez López, J. & Scarlat, N., 2021. "Are algae ready to take off? GHG emission savings of algae-to-kerosene production," Applied Energy, Elsevier, vol. 304(C).
    8. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    9. Santori, Giulio & Charalambous, Charithea & Ferrari, Maria-Chiara & Brandani, Stefano, 2018. "Adsorption artificial tree for atmospheric carbon dioxide capture, purification and compression," Energy, Elsevier, vol. 162(C), pages 1158-1168.
    10. Li, Shuangjun & Deng, Shuai & Zhao, Li & Yuan, Xiangzhou & Yun, Heesun, 2020. "How to express the adsorbed CO2 with the Gibbs’ thermodynamic graphical method: A preliminary study," Energy, Elsevier, vol. 193(C).
    11. Johannes Full & Steffen Merseburg & Robert Miehe & Alexander Sauer, 2021. "A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS)," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    12. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Li, Canbing & Shi, Haiqing & Cao, Yijia & Kuang, Yonghong & Zhang, Yongjun & Gao, Dan & Sun, Liang, 2015. "Modeling and optimal operation of carbon capture from the air driven by intermittent and volatile wind power," Energy, Elsevier, vol. 87(C), pages 201-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219322820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.