IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics036054421931463x.html
   My bibliography  Save this article

Mechanistic modelling of cyclic voltage-capacity response for lithium-ion batteries

Author

Listed:
  • Nagode, Marko
  • Gosar, Aleš
  • Sweeney, Caoimhe A.
  • Jaguemont, Joris
  • Van Mierlo, Joeri
  • Šeruga, Domen

Abstract

One of the challenging tasks related to lithium-ion batteries (LIBs) remains a comprehensive approach for battery behaviour modelling. An approach is presented that enables modelling the voltage-capacity response of LIBs that are subjected to variable temperature and current load histories. A detailed presentation of the developed macro-scale phenomenological model embedding the mechanistic properties of the Prandtl type hysteresis operator and the concept of the force-voltage analogy is made. The necessary input data preparation for the model calibration is also presented. Accuracy of the model is confirmed with experimental observations for both nested current load history at two different temperatures and for arbitrary current load history. The same measured data is used to calibrate and to simulate response of the first order Thevenin equivalent circuit topology in order to amply compare the obtained results.

Suggested Citation

  • Nagode, Marko & Gosar, Aleš & Sweeney, Caoimhe A. & Jaguemont, Joris & Van Mierlo, Joeri & Šeruga, Domen, 2019. "Mechanistic modelling of cyclic voltage-capacity response for lithium-ion batteries," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s036054421931463x
    DOI: 10.1016/j.energy.2019.07.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421931463X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Tiancheng & Xu, Peihang & Chen, Jingxian & Su, Zixiang & Huang, Guicong & Chen, Nan, 2021. "A novel state of charge estimation method for lithium-ion batteries based on bias compensation," Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s036054421931463x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.