IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp594-605.html
   My bibliography  Save this article

Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar production

Author

Listed:
  • Mohammadi, Ali
  • Sandberg, Maria
  • Venkatesh, G.
  • Eskandari, Samieh
  • Dalgaard, Tommy
  • Joseph, Stephen
  • Granström, Karin

Abstract

This paper evaluates the environmental impacts of different alternatives for handling of sludge from paper and pulp mills in Sweden, using Life Cycle Assessment (LCA). The common practice of incineration of biosludge with energy recovery followed by landfilling of ash (System A) was compared with the alternative of digesting sludge anaerobically to produce biogas using different digestate residue management options. The digestate produced from anaerobic digestion (AD) was assumed to be incinerated for heat energy recovery in System B or pyrolyzed for biochar production in System C to be mixed with forest soils. The impact categories considered in this work are climate change, non-renewable energy use, mineral extraction, aquatic ecotoxicity, carcinogens and non-carcinogens. The LCA results demonstrate that the two proposed systems significantly reduce the environmental impacts of biosludge management relative to incineration. An 85% reduction in the aquatic ecotoxicity impact is achieved in System C, due to the reduced mobility of heavy metals in biochar relative to ash. System C, on the whole, outperformed the other two, leading the authors to the recommendation that the use of pulp and paper mill biosludge in biogas-biochar production systems is preferable to merely recovering energy from it.

Suggested Citation

  • Mohammadi, Ali & Sandberg, Maria & Venkatesh, G. & Eskandari, Samieh & Dalgaard, Tommy & Joseph, Stephen & Granström, Karin, 2019. "Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar production," Energy, Elsevier, vol. 182(C), pages 594-605.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:594-605
    DOI: 10.1016/j.energy.2019.06.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421931196X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malhotra, Milan & Aboudi, Kaoutar & Pisharody, Lakshmi & Singh, Ayush & Banu, J. Rajesh & Bhatia, Shashi Kant & Varjani, Sunita & Kumar, Sunil & González-Fernández, Cristina & Kumar, Sumant & Singh, R, 2022. "Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    3. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    4. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    5. Milan Carsky & Olga Solcova & Karel Soukup & Tomas Kralik & Kamila Vavrova & Lukas Janota & Miroslav Vitek & Stanislav Honus & Marek Jadlovec & Lenka Wimmerova, 2022. "Techno-Economic Analysis of Fluidized Bed Combustion of a Mixed Fuel from Sewage and Paper Mill Sludge," Energies, MDPI, vol. 15(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:594-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.