IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp181-195.html
   My bibliography  Save this article

On using the minimum energy dissipation to estimate the steady-state of a flow network and discussion about the resulting power-law:application to tree-shaped networks in HVAC systems

Author

Listed:
  • Soto-Francés, Víctor-Manuel
  • Pinazo-Ojer, José-Manuel
  • Sarabia-Escrivá, Emilio-José
  • Martínez-Beltrán, Pedro-Juan

Abstract

The paper analyses how to compute the steady-state flow distribution through a given network by using the Minimum Entropy Production (MinEP) principle. For isothermal and incompressible flows, this is equivalent to the minimal dissipation of energy. The conditions that make this method equivalent to the conventional one are studied. There must exist a power-law for the energy dissipation (entropy generation) where the exponent must be the same for the whole network. To our knowledge, Niven was the first to get to this result. However he applied MinEP only to parallel pipes and unfortunately discarded it as a general method.

Suggested Citation

  • Soto-Francés, Víctor-Manuel & Pinazo-Ojer, José-Manuel & Sarabia-Escrivá, Emilio-José & Martínez-Beltrán, Pedro-Juan, 2019. "On using the minimum energy dissipation to estimate the steady-state of a flow network and discussion about the resulting power-law:application to tree-shaped networks in HVAC systems," Energy, Elsevier, vol. 172(C), pages 181-195.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:181-195
    DOI: 10.1016/j.energy.2019.01.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenterodt, Tammo & Redecker, Christoph & Herwig, Heinz, 2015. "Second law analysis for sustainable heat and energy transfer: The entropic potential concept," Applied Energy, Elsevier, vol. 139(C), pages 376-383.
    2. Dejan Brkić, 2011. "Iterative Methods for Looped Network Pipeline Calculation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(12), pages 2951-2987, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Pranay & Podgorney, Robert & McLennan, John & Deo, Milind & Moore, Joseph, 2022. "Analytical model for fluid flow distribution in an Enhanced Geothermal Systems (EGS)," Renewable Energy, Elsevier, vol. 193(C), pages 821-831.
    2. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    3. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Dejan Brkić & Pavel Praks, 2018. "Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function," Mathematics, MDPI, vol. 7(1), pages 1-15, December.
    5. Pavel Praks & Dejan Brkić, 2018. "One-Log Call Iterative Solution of the Colebrook Equation for Flow Friction Based on Padé Polynomials," Energies, MDPI, vol. 11(7), pages 1-12, July.
    6. Yan, Aibin & Zhao, Jun & An, Qingsong & Zhao, Yulong & Li, Hailong & Huang, Yrjö Jun, 2013. "Hydraulic performance of a new district heating systems with distributed variable speed pumps," Applied Energy, Elsevier, vol. 112(C), pages 876-885.
    7. Zahreddine Hafsi & Sami Elaoud & Manoranjan Mishra & Mohsen Akrout, 2018. "Automated Framework for Water Looped Network Equilibrium," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 641-657, January.
    8. Huang, Pingnan & Pan, Minqiang, 2021. "Secondary heat transfer enhancement design of variable cross-section microchannels based on entransy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Calvin Siew & Tiku Tanyimboh, 2012. "Penalty-Free Feasibility Boundary Convergent Multi-Objective Evolutionary Algorithm for the Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4485-4507, December.
    10. Nikolay Novitsky & Egor Mikhailovsky, 2021. "Generalization of Methods for Calculating Steady-State Flow Distribution in Pipeline Networks for Non-Conventional Flow Models," Mathematics, MDPI, vol. 9(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:181-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.