IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp1179-1186.html
   My bibliography  Save this article

Implementation of machine learning based real time range estimation method without destination knowledge for BEVs

Author

Listed:
  • Yavasoglu, H.A.
  • Tetik, Y.E.
  • Gokce, K.

Abstract

In this work, an advanced range estimation method based on experimental test data including environmental factors and dynamic vehicle parameters with driver and road type predictions is proposed for electric vehicles.

Suggested Citation

  • Yavasoglu, H.A. & Tetik, Y.E. & Gokce, K., 2019. "Implementation of machine learning based real time range estimation method without destination knowledge for BEVs," Energy, Elsevier, vol. 172(C), pages 1179-1186.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1179-1186
    DOI: 10.1016/j.energy.2019.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930221X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Ziyou & Li, Jianqiu & Hou, Jun & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study," Energy, Elsevier, vol. 154(C), pages 433-441.
    2. Robert B. Noland * & Washington Y. Ochieng & Mohammed A. Quddus & Robin J. North & John W. Polak, 2004. "The vehicle emissions and performance monitoring system: analysis of tailpipe emissions and vehicle performance," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(6), pages 431-447, September.
    3. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    4. Apostolaki-Iosifidou, Elpiniki & Codani, Paul & Kempton, Willett, 2017. "Measurement of power loss during electric vehicle charging and discharging," Energy, Elsevier, vol. 127(C), pages 730-742.
    5. Luin, B. & Petelin, S. & Al Mansour, F., 2017. "Modeling the impact of road network configuration on vehicle energy consumption," Energy, Elsevier, vol. 137(C), pages 260-271.
    6. Abu Hanifah, Rabiatuladawiyah & Toha, Siti Fauziah & Hassan, Mohd Khair & Ahmad, Salmiah, 2016. "Power reduction optimization with swarm based technique in electric power assist steering system," Energy, Elsevier, vol. 102(C), pages 444-452.
    7. Giansoldati, Marco & Danielis, Romeo & Rotaris, Lucia & Scorrano, Mariangela, 2018. "The role of driving range in consumers' purchasing decision for electric cars in Italy," Energy, Elsevier, vol. 165(PA), pages 267-274.
    8. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    9. Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael, 2018. "Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles," Energy, Elsevier, vol. 157(C), pages 19-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Galvagno & Umberto Previti & Fabio Famoso & Sebastian Brusca, 2021. "An Innovative Methodology to Take into Account Traffic Information on WLTP Cycle for Hybrid Vehicles," Energies, MDPI, vol. 14(6), pages 1-16, March.
    2. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    3. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2023. "Industry 5.0 and Triple Bottom Line Approach in Supply Chain Management: The State-of-the-Art," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    4. Bas, Javier & Cirillo, Cinzia & Cherchi, Elisabetta, 2021. "Classification of potential electric vehicle purchasers: A machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    2. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    3. Hugo Ferreira & Carlos Manuel Rodrigues & Carlos Pinho, 2019. "Impact of Road Geometry on Vehicle Energy Consumption and CO 2 Emissions: An Energy-Efficiency Rating Methodology," Energies, MDPI, vol. 13(1), pages 1-27, December.
    4. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    5. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    6. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    7. Robin Smit & Eckard Helmers & Michael Schwingshackl & Martin Opetnik & Daniel Kennedy, 2024. "Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)," Sustainability, MDPI, vol. 16(2), pages 1-38, January.
    8. Chen, Xiao & Wu, Tian & Zheng, Rui & Guo, Xiaoxian, 2018. "How vehicle market is segmented and influenced by subsidy policy: A theoretical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 776-782.
    9. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    10. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.
    11. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    12. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    13. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    14. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    15. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    17. Ivan Pavić & Zora Luburić & Hrvoje Pandžić & Tomislav Capuder & Ivan Andročec, 2019. "Defining and Evaluating Use Cases for Battery Energy Storage Investments: Case Study in Croatia," Energies, MDPI, vol. 12(3), pages 1-23, January.
    18. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    19. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2019. "A unified model to optimize configuration of battery energy storage systems with multiple types of batteries," Energy, Elsevier, vol. 176(C), pages 552-560.
    20. Subhojit Dawn & Gummadi Srinivasa Rao & M. L. N. Vital & K. Dhananjay Rao & Faisal Alsaif & Mohammed H. Alsharif, 2023. "Profit Extension of a Wind-Integrated Competitive Power System by Vehicle-to-Grid Integration and UPFC Placement," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1179-1186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.