IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v15y1990i10p873-884.html
   My bibliography  Save this article

Structures for superconductive magnetic energy storage

Author

Listed:
  • Varghese, Philip
  • Tam, Kwa-Sur

Abstract

The cost of superconductor material is a significant portion of the total cost of an SMES (Superconducting Magnetic Energy Storage) system. The mass of superconductor required to store a given amount of energy is a function of the magnet structure. Five magnetic structures applicable for SMES are examined in this paper from the viewpoint of their energy storage capacities along with the peak field magnitudes. Two force-balanced structures are analyzed and compared.

Suggested Citation

  • Varghese, Philip & Tam, Kwa-Sur, 1990. "Structures for superconductive magnetic energy storage," Energy, Elsevier, vol. 15(10), pages 873-884.
  • Handle: RePEc:eee:energy:v:15:y:1990:i:10:p:873-884
    DOI: 10.1016/0360-5442(90)90069-E
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429090069E
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(90)90069-E?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Reza, Alizadeh Pahlavani & Ali, Mohammadpour Hossine, 2010. "An optimized SVPWM switching strategy for three-level NPC VSI and a novel switching strategy for three-level two-quadrant chopper to stabilize the voltage of capacitors," Energy, Elsevier, vol. 35(12), pages 4917-4931.
    2. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    3. Mohammad Reza, Alizadeh Pahlavani & Hossine Ali, Mohammadpour & Abbas, Shoulaie, 2010. "Voltage stabilization of VSI SMES capacitors and voltage sag compensation by SMES using novel switching strategies," Energy, Elsevier, vol. 35(8), pages 3131-3142.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:15:y:1990:i:10:p:873-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.