IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v157y2018icp188-199.html
   My bibliography  Save this article

Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas

Author

Listed:
  • Awad, Abdelrahman
  • Aljundi, Isam H.

Abstract

Carbide-derived-carbon (CDC) have garnered increasing attention because it has shown potential for various applications including gas separation. In this article, we report for the first time the fabrication of CDC/polyamide composite membrane for CO2/CH4 separation. Different loadings of CDC were embedded in the polyamide layer to develop CDC/Polyamide mixed matrix membranes (MMMs) by the interfacial polymerization reaction of piperazine (PIP) and isophthaloyl chloride (IPC). The morphology and structural properties of the fabricated membranes, as well as the CDC nanoparticles, were examined by SEM, FT-IR, TGA, XRD, and N2 adsorption analysis. The characterization results confirmed the successful incorporation of the CDC nanoparticles into the rough polyamide layer. Gas permeation measurements of the fabricated CDC/PA membranes demonstrated an 88% and 49% enhancement in CO2 permeance and CO2/CH4 selectivity compared to the neat polyamide membrane. The CDC nanoparticles disrupted the polyamide matrix which resulted in a higher free volume to transport gases. In addition, MMMs were assembled layer-by-layer and their permeation tests revealed that building more than one selective layer on top of the polysulfone support increased the CO2/CH4 selectivity and decreased the CO2 permeance. MMMs with 10 selective layers showed the best separation performance with a CO2/CH4 selectivity of 24.

Suggested Citation

  • Awad, Abdelrahman & Aljundi, Isam H., 2018. "Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas," Energy, Elsevier, vol. 157(C), pages 188-199.
  • Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:188-199
    DOI: 10.1016/j.energy.2018.05.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830968X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdolahi-Mansoorkhani, Hamed & Seddighi, Sadegh, 2019. "H2S and CO2 capture from gaseous fuels using nanoparticle membrane," Energy, Elsevier, vol. 168(C), pages 847-857.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:157:y:2018:i:c:p:188-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.