IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp264-277.html
   My bibliography  Save this article

Analysis of recycled aggregates effect on energy conservation using M5′ model tree algorithm

Author

Listed:
  • Afsarian, Fatemeh
  • Saber, Aniseh
  • Pourzangbar, Ali
  • Olabi, Abdul Ghani
  • Khanmohammadi, Mohammad Ali

Abstract

Sustainability targets can be achieved by pursuing environmental-friendly and energy-efficient design and construction. Being sub-standard in terms of stability, buildings would pose serious threats to the environment and natural sources. Therefore, having sustainable design and construction is of great importance in building industry. To achieve sustainability targets, recently recycled aggregates attracted special attention. While several studies have been conducted on the thermal and hydrometric characteristics of recycled materials, there are few studies available on the evaluation of the applicability of these materials in buildings. Accordingly, in this study, the performance of four different recycled concrete panels, produced using waste and recycled materials, has been investigated in terms of energy consumption in a residential building using Design-Builder software. Moreover, a model tree algorithm (M5′) has been used to evolve formulas for predicting the total energy consumption in the reference building. To do this, up to 1200 simulations using various recycled materials and glass areas have been carried out in Design-Builder software. The performances of the developed formulas have been evaluated on the basis of statistical measures. The results suggest that M5′ could serve as a valuable tool for the estimation of total energy consumption in residential buildings.

Suggested Citation

  • Afsarian, Fatemeh & Saber, Aniseh & Pourzangbar, Ali & Olabi, Abdul Ghani & Khanmohammadi, Mohammad Ali, 2018. "Analysis of recycled aggregates effect on energy conservation using M5′ model tree algorithm," Energy, Elsevier, vol. 156(C), pages 264-277.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:264-277
    DOI: 10.1016/j.energy.2018.05.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Bienvenido-Huertas & Jesús A. Pulido-Arcas & Carlos Rubio-Bellido & Alexis Pérez-Fargallo, 2021. "Prediction of Fuel Poverty Potential Risk Index Using Six Regression Algorithms: A Case-Study of Chilean Social Dwellings," Sustainability, MDPI, vol. 13(5), pages 1-30, February.
    2. Rana Muhammad Adnan & Salim Heddam & Zaher Mundher Yaseen & Shamsuddin Shahid & Ozgur Kisi & Binquan Li, 2020. "Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches," Sustainability, MDPI, vol. 13(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:264-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.