IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp169-180.html
   My bibliography  Save this article

Comparative thermodynamic evaluation of a geothermal power plant by using the advanced exergy and artificial bee colony methods

Author

Listed:
  • Özkaraca, Osman
  • Keçebaş, Ali
  • Demircan, Cihan

Abstract

In this study, the thermodynamic performance of a binary geothermal power plant (GPP) is comparatively evaluated using the exergy analysis and optimization method. Thus, in addition to routes to improve the thermodynamic performance of the system, the thermodynamic relationships between the system components and improvement performances of the components are determined. With this aim, the Sinem GPP located in Aydın province in Turkey as a real system is selected. All data from the system are collected and a numerical model simulating the real system is developed. On the developed model, the conventional and advanced exergy analyses for exergy analysis and the artificial bee colony (ABC) method for optimization process are performed. The results of the study show that total exergy efficiencies of the conventional exergy analysis, advanced exergy analysis and artificial bee colony are determined as 39.1%, 43.1% and 42.8%, respectively. The exergy efficiency obtained from advanced exergy analysis is higher compared to the other two methods. This is due to the fact that theoretical and unavoidable operation assumptions in advanced exergy analysis are arbitrary as a single value depending on the decision maker. However, decision variables in the ABC method are within certain constraints chosen by the decision maker. It is better to select constraint limits instead of an arbitrary single value selection. Therefore, its arbitrary values should be confirmed with any optimization method. Additionally, the highest exergy destruction identified in the three methods is occurred in heat exchangers as the condenser and vaporizer.

Suggested Citation

  • Özkaraca, Osman & Keçebaş, Ali & Demircan, Cihan, 2018. "Comparative thermodynamic evaluation of a geothermal power plant by using the advanced exergy and artificial bee colony methods," Energy, Elsevier, vol. 156(C), pages 169-180.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:169-180
    DOI: 10.1016/j.energy.2018.05.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Çetin, Gürcan & Keçebaş, Ali, 2021. "Optimization of thermodynamic performance with simulated annealing algorithm: A geothermal power plant," Renewable Energy, Elsevier, vol. 172(C), pages 968-982.
    2. Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
    3. Onur Vahip Güler & Emine Yağız Gürbüz & Aleksandar G. Georgiev & Ali Keçebaş, 2023. "Advanced Exergoeconomic Assessment of CO 2 Emissions, Geo-Fluid and Electricity in Dual Loop Geothermal Power Plant," Energies, MDPI, vol. 16(8), pages 1-24, April.
    4. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    5. Çetin, Gürcan & Özkaraca, Osman & Keçebaş, Ali, 2021. "Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:169-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.