IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp995-1006.html
   My bibliography  Save this article

An optimised logarithmic discretisation approach for accurate and efficient compact thermal models

Author

Listed:
  • Hillary, Jason
  • Walsh, Ed
  • Shah, Amip
  • Zhou, Rongliang
  • Walsh, Pat

Abstract

The accuracy of building energy simulations is of considerable interest as discrepant results can elicit adverse financial and environment consequences. The physical and temporal scales considered within building energy applications necessitate compact modelling approaches. The prediction accuracy of such simulations is intrinsically linked with the ability to predict the thermal responses of structural elements. The optimal means of representing these components such that accurate solutions are ensured at minimal computational cost remains unclear. The current study seeks to optimise the spatial placement of nodes through assessing and reporting results pertaining to a logarithmic spatial discretisation method. Contour plots are presented to intuitively determine optimal discretisation levels and time steps required for accurate thermal response predictions. This is achieved by comparing numerical solutions of varying discretisation levels with benchmark analytical solutions. Results are reported in terms of governing dimensionless parameters, Biot and Fourier numbers, to ensure generality of findings. Furthermore, spatial and temporal discretisation errors are separated and assessed independently. Finally, models derived using the proposed guidance achieve high levels of prediction accuracy for typically encountered boundary conditions with buildings.

Suggested Citation

  • Hillary, Jason & Walsh, Ed & Shah, Amip & Zhou, Rongliang & Walsh, Pat, 2018. "An optimised logarithmic discretisation approach for accurate and efficient compact thermal models," Energy, Elsevier, vol. 147(C), pages 995-1006.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:995-1006
    DOI: 10.1016/j.energy.2018.01.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hillary, Jason & Walsh, Ed & Shah, Amip & Zhou, Rongliang & Walsh, Pat, 2017. "Guidelines for developing efficient thermal conduction and storage models within building energy simulations," Energy, Elsevier, vol. 125(C), pages 211-222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marzullo, Thibault & Keane, Marcus M. & Geron, Marco & Monaghan, Rory F.D., 2019. "A computational toolchain for the automatic generation of multiple Reduced-Order Models from CFD simulations," Energy, Elsevier, vol. 180(C), pages 511-519.
    2. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2018. "Development of a lightweight building simulation tool using simplified zone thermal coupling for fast parametric study," Applied Energy, Elsevier, vol. 223(C), pages 188-214.
    3. Abokersh, Mohamed Hany & Spiekman, Marleen & Vijlbrief, Olav & van Goch, T.A.J. & Vallès, Manel & Boer, Dieter, 2021. "A real-time diagnostic tool for evaluating the thermal performance of nearly zero energy buildings," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:995-1006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.