IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v143y2018icp575-584.html
   My bibliography  Save this article

Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia

Author

Listed:
  • Manrique, Raiza
  • Vásquez, Daniela
  • Vallejo, Gabriel
  • Chejne, Farid
  • Amell, Andrés A.
  • Herrera, Bernardo

Abstract

A characterization of the energy profile of certain ceramic industry enterprises in Colombia was carried out. An emphasis was placed on the barriers that prevent the implementation of energy efficiency actions, the degree of obsolescence of their production equipment, and the potential for energy efficiency savings. The barrier with the greatest impact in this sector was found to be hidden costs, followed by corporate values. There was a positive correlation between the potential savings and the degree of equipment obsolescence and the total barrier factor to the implementation of energy efficiency measures. Finally, it was concluded that the creation of programs that allow for more certainty in the appropriation of new technologies could help to overcome the barriers in Colombia's ceramic industry.

Suggested Citation

  • Manrique, Raiza & Vásquez, Daniela & Vallejo, Gabriel & Chejne, Farid & Amell, Andrés A. & Herrera, Bernardo, 2018. "Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia," Energy, Elsevier, vol. 143(C), pages 575-584.
  • Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:575-584
    DOI: 10.1016/j.energy.2017.11.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421731873X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagesha, N. & Balachandra, P., 2006. "Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process," Energy, Elsevier, vol. 31(12), pages 1969-1983.
    2. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    3. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    4. Blass, Vered & Corbett, Charles J. & Delmas, Magali A. & Muthulingam, Suresh, 2014. "Top management and the adoption of energy efficiency practices: Evidence from small and medium-sized manufacturing firms in the US," Energy, Elsevier, vol. 65(C), pages 560-571.
    5. Timilsina, Govinda R. & Hochman, Gal & Fedets, Iryna, 2016. "Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms," Energy, Elsevier, vol. 106(C), pages 203-211.
    6. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cunha, Paulo & Neves, Sónia Almeida & Marques, António Cardoso & Serrasqueiro, Zélia, 2020. "Adoption of energy efficiency measures in the buildings of micro-, small- and medium-sized Portuguese enterprises11The financial support of the NECE - Research Unit in Business Science and Economics, ," Energy Policy, Elsevier, vol. 146(C).
    2. Estrada, Omar & Ortiz, Juan Carlos & Hernández, Alexander & López, Iván & Chejne, Farid & del Pilar Noriega, María, 2020. "Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency," Energy, Elsevier, vol. 194(C).
    3. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza & Piran, Md Jalil, 2020. "A game theoretic approach for the duopoly pricing of energy-efficient appliances regarding innovation protection and social welfare," Energy, Elsevier, vol. 200(C).
    4. Shi, Yingying & Zeng, Yongchao & Engo, Jean & Han, Botang & Li, Yang & Muehleisen, Ralph T., 2020. "Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model," Applied Energy, Elsevier, vol. 263(C).
    5. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    7. Ruivo, Luís & Russo, Michael & Lourenço, Rúben & Pio, Daniel, 2021. "Energy management in the Portuguese ceramic industry: Analysis of real-world factories," Energy, Elsevier, vol. 237(C).
    8. Zare Banadkouki, Mohammad Reza, 2023. "Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS," Energy, Elsevier, vol. 279(C).
    9. Victor A. Alcal Abraham & Elkin D. Alem n Causil & Vladimir Sousa Santos & Eliana Noriega Angarita & Julio R. G mez Sarduy, 2021. "Identification of Savings Opportunities in a Steel Manufacturing Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 43-50.
    10. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    2. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    3. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    4. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    5. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    6. Shi, Yingying & Zeng, Yongchao & Engo, Jean & Han, Botang & Li, Yang & Muehleisen, Ralph T., 2020. "Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model," Applied Energy, Elsevier, vol. 263(C).
    7. Apriani Soepardi & Patrik Thollander, 2018. "Analysis of Relationships among Organizational Barriers to Energy Efficiency Improvement: A Case Study in Indonesia’s Steel Industry," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    8. Marlene Preiß, 2021. "Treiber und Hemmnisse betrieblicher Effizienzmaßnahmen – Vernetzung als Erfolgsfaktor [Drivers and barriers of operational efficiency measures—networking as a success factor]," Sustainability Nexus Forum, Springer, vol. 29(2), pages 93-106, June.
    9. Timilsina, Govinda R. & Hochman, Gal & Fedets, Iryna, 2016. "Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms," Energy, Elsevier, vol. 106(C), pages 203-211.
    10. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Sánchez, Gustavo Crespo & Monteagudo Yanes, José Pedro & Pérez, Milagros Montesino & Cabrera Sánchez, Jorge Luis & Padrón, Arturo Padrón & Haeseldonckx, Dries, 2020. "Efficiency in electromechanical drive motors and energy performance indicators for implementing a management system in balanced animal feed manufacturing," Energy, Elsevier, vol. 194(C).
    12. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.
    13. Kangas, Hanna-Liisa & Lazarevic, David & Kivimaa, Paula, 2018. "Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies," Energy Policy, Elsevier, vol. 114(C), pages 63-76.
    14. Vallecha, Harshit & Bhattacharjee, Debraj & Osiri, John Kalu & Bhola, Prabha, 2021. "Evaluation of barriers and enablers through integrative multicriteria decision mapping: Developing sustainable community energy in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    16. Finnerty, Noel & Sterling, Raymond & Contreras, Sergio & Coakley, Daniel & Keane, Marcus M., 2018. "Defining corporate energy policy and strategy to achieve carbon emissions reduction targets via energy management in non-energy intensive multi-site manufacturing organisations," Energy, Elsevier, vol. 151(C), pages 913-929.
    17. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
    18. Hassen, Sied & Gebrehiwot, Tagel & Arega, Tiruwork, 2018. "Determinants of enterprises use of energy efficient technologies: Evidence from urban Ethiopia," Energy Policy, Elsevier, vol. 119(C), pages 388-395.
    19. Jun Dong & Huijuan Huo, 2017. "Identification of Financing Barriers to Energy Efficiency in Small and Medium-Sized Enterprises by Integrating the Fuzzy Delphi and Fuzzy DEMATEL Approaches," Energies, MDPI, vol. 10(8), pages 1-26, August.
    20. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:143:y:2018:i:c:p:575-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.