IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v13y1988i9p681-687.html
   My bibliography  Save this article

Power optimization of a finite-time Carnot heat engine

Author

Listed:
  • Wu, Chih

Abstract

The power output of a simple, finite-time Carnot heat engine is studied. The model adopted is a reversible Carnot cycle coupled to a heat source and a heat sink by heat transfer. Both the heat source and the heat sink have finite heat-capacity rates. A mathematical expression is derived for the power output of the irreversible heat engine. The maximum power output is found. The maximum bound provides the basis for designing a real heat engine and for a performance comparison with existing power plants.

Suggested Citation

  • Wu, Chih, 1988. "Power optimization of a finite-time Carnot heat engine," Energy, Elsevier, vol. 13(9), pages 681-687.
  • Handle: RePEc:eee:energy:v:13:y:1988:i:9:p:681-687
    DOI: 10.1016/0360-5442(88)90099-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544288900990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(88)90099-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Hansaem & Kim, Min Soo, 2016. "Performance analysis of sequential Carnot cycles with finite heat sources and heat sinks and its application in organic Rankine cycles," Energy, Elsevier, vol. 99(C), pages 1-9.
    2. Khaliq, Abdul & Kumar, Rajesh, 2005. "Finite-time heat-transfer analysis and ecological optimization of an endoreversible and regenerative gas-turbine power-cycle," Applied Energy, Elsevier, vol. 81(1), pages 73-84, May.
    3. Khaliq, Abdul, 2004. "Finite-time heat-transfer analysis and generalized power-optimization of an endoreversible Rankine heat-engine," Applied Energy, Elsevier, vol. 79(1), pages 27-40, September.
    4. Erbay, L. Berrin & Yavuz, Hasbi, 1999. "Analysis of an irreversible Ericsson engine with a realistic regenerator," Applied Energy, Elsevier, vol. 62(3), pages 155-167, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:13:y:1988:i:9:p:681-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.