IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp577-584.html
   My bibliography  Save this article

Kinetics of furfuryl alcohol condensation over acid catalyst for preparing diesel precursor

Author

Listed:
  • Sun, Shaohui
  • Yang, Ruishu
  • Sun, Peiqin
  • Ma, Chunsong
  • Chen, Junwu

Abstract

C9-C25 oxygen-containing compounds formed via the condensation reaction of furfuryl alcohol(FA) can be used as fuel intermediates for the production of bio-fuel. In this paper, the condensation reaction of FA was carried on over sulfuric acid catalyst in a batch aqueous phase reactor, in which the produced oligomers were separated from aqueous reaction system automatically before they went on further to form polymers. Reaction kinetics experiments showed that the values of reaction order of FA and sulfuric acid all were 1. The molecular structure and content of short chain-length oligomers B (C9-C25) were analyzed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC) respectively. The molecular weight of FA condensate was determined by gel permeation chromatography (GPC). According to the information provided by GC/MS and GPC, we revealed that two polymerization mechanisms, step-growth polymerization and chain-growth polymerization, coexist in FA condensation reaction process in aqueous system. A simplified kinetics model based on the present mechanisms was established, and condensation products were divided into short chain-length oligomers B (C9-C25) and long chain-length oligomers C (>C25).

Suggested Citation

  • Sun, Shaohui & Yang, Ruishu & Sun, Peiqin & Ma, Chunsong & Chen, Junwu, 2017. "Kinetics of furfuryl alcohol condensation over acid catalyst for preparing diesel precursor," Energy, Elsevier, vol. 135(C), pages 577-584.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:577-584
    DOI: 10.1016/j.energy.2017.06.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Kai & Chang, Jian & Guan, Yanjun & Chen, Honggang & Yang, Yongping & Jiang, Jianchun, 2013. "Lignocellulosic biomass gasification technology in China," Renewable Energy, Elsevier, vol. 49(C), pages 175-184.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    2. Tang, Yunheng & Huang, Yun & Gan, Wentian & Xia, Ao & Liao, Qiang & Zhu, Xianqing, 2021. "Ethanol production from gas fermentation: Rapid enrichment and domestication of bacterial community with continuous CO/CO2 gas," Renewable Energy, Elsevier, vol. 175(C), pages 337-344.
    3. Fugang Zhu & Laihong Shen & Pengcheng Xu & Haoran Yuan & Ming Hu & Jingwei Qi & Yong Chen, 2022. "Numerical Simulation of an Improved Updraft Biomass Gasifier Based on Aspen Plus," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    4. Ram, Mahendra & Mondal, Monoj Kumar, 2019. "Investigation on fuel gas production from pulp and paper waste water impregnated coconut husk in fluidized bed gasifier via humidified air and CO2 gasification," Energy, Elsevier, vol. 178(C), pages 522-529.
    5. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    6. Umar, Mohd Shaharin & Jennings, Philip & Urmee, Tania, 2014. "Sustainable electricity generation from oil palm biomass wastes in Malaysia: An industry survey," Energy, Elsevier, vol. 67(C), pages 496-505.
    7. Yang, Jun & Dai, Guanghui & Ma, Luyi & Jia, Liming & Wu, Jian & Wang, Xiaohua, 2013. "Forest-based bioenergy in China: Status, opportunities, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 478-485.
    8. Zhang, Weiwei & Huang, Sheng & Wu, Shiyong & Wu, Youqing & Gao, Jinsheng, 2020. "Ash fusion characteristics and gasification activity during biomasses co-gasification process," Renewable Energy, Elsevier, vol. 147(P1), pages 1584-1594.
    9. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    10. Ullah, Atta & Hong, Kun & Gao, Yanan & Gungor, Afsin & Zaman, Muhammad, 2019. "An overview of Eulerian CFD modeling and simulation of non-spherical biomass particles," Renewable Energy, Elsevier, vol. 141(C), pages 1054-1066.
    11. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    12. Umar, Mohd Shaharin & Urmee, Tania & Jennings, Philip, 2018. "A policy framework and industry roadmap model for sustainable oil palm biomass electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 128(PA), pages 275-284.
    13. Cirella, Giuseppe T. & Zerbe, Stefan, 2014. "Sustainable Water Management and Wetland Restoration Strategies in Northern China," MPRA Paper 120233, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:577-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.