IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp455-470.html
   My bibliography  Save this article

Modeling oil production and its peak by means of a stochastic diffusion process based on the Hubbert curve

Author

Listed:
  • Luz-Sant’Ana, Istoni
  • Román-Román, Patricia
  • Torres-Ruiz, Francisco

Abstract

The present paper introduces a new diffusion process for the purpose of modeling a Hubbert-type behavior pattern. The main features of the process will be analyzed and the maximum likelihood estimation of the parameters will be carried out through discrete sampling. To this end, a complex system of equations must be solved through numerical procedures, requiring the search for an appropriate initial solution. To this end, we propose three search procedures.

Suggested Citation

  • Luz-Sant’Ana, Istoni & Román-Román, Patricia & Torres-Ruiz, Francisco, 2017. "Modeling oil production and its peak by means of a stochastic diffusion process based on the Hubbert curve," Energy, Elsevier, vol. 133(C), pages 455-470.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:455-470
    DOI: 10.1016/j.energy.2017.05.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2019. "A Note on Estimation of Multi-Sigmoidal Gompertz Functions with Random Noise," Mathematics, MDPI, vol. 7(6), pages 1-18, June.
    2. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2021. "T-Growth Stochastic Model: Simulation and Inference via Metaheuristic Algorithms," Mathematics, MDPI, vol. 9(9), pages 1-20, April.
    3. Antonio Barrera & Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2021. "Two Multi-Sigmoidal Diffusion Models for the Study of the Evolution of the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(19), pages 1-29, September.
    4. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2021. "Hyperbolastic Models from a Stochastic Differential Equation Point of View," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    5. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2018. "Some Notes about Inference for the Lognormal Diffusion Process with Exogenous Factors," Mathematics, MDPI, vol. 6(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:455-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.